

Temperature and heat-flow techniques in the exploration of Enhanced Geothermal Systems (EGS): an overview from the shallow surface to deep into the lithosphere

Förster, A., Lenkey, L., Schellschmidt, R., VanWees, J.-D., Cloetingh, S.A.P.L.

• Evaluation of the thermal state of subsurface formations at drillable depth

 Deciphering of processes responsible for temperatures appropriate for EGS development

Heat Flow Density (mW m⁻²)

(Haenel and Hurter, 2002)

cnainc

Heat-Flow Determination

Basic Data

- temperature values/profiles
- temperature gradient
- thermal conductivity (core/cuttings)

Corrections of Temperature and T gradients

- terrain effects incl. topography, paleoclimate etc.

Temperature \rightarrow

Effects on Thermal Field Pattern

Geodynamic processes in lithosphere and asthenosphere

Heat generation and thermal conductivity of crust

Heat distribution by fluids

High amplitude / small wavelength anomalies, where and why ?

Transient heat flow

Ukrainian shield **Bohemian Massif** 60 50 W Carpathians THICKNESS OF THE LITHOSPHERE IN THE PANNONIAN REGION 1 Sum seismological station ×120 100 deep magnetotelluric 80 E-Alps sounding site 90 120 ×100 45.415 140 Pannonian basin *150 80 086 120 500 0 b Dinarides 0 100 200

HEAT FLOW IN THE PANNONIAN REGION

0

-20° -10° 0° 10° 20° 30° 40° 50° 60° 70° 80° P 70° 70° 60° 60° NGB Rhine Valley 50° 50° Pannonian B. Larderello Field 40° 40° GGA 2004 -20° 50° 60° 80° -10° 0° 40° 70° 10° 20° 30° 20 40 80 100 60 120 140 0

ENGINE – WP 3 Workshop, Potsdam, 06-08 November 2006

cnuinc

Heat Flow Density (mW m⁻²)

North German Basin

• Heat flow by conduction

• High heat flow (70-90 mW/m²) as a result of lithosphere thickness and crustal composition

The Rhine Graben Temperature at 800 m

- Thermal anomalies are not correlated to crustal thickness
- Heat transfer is as combination of conduction and convection

(Pribnow and Schellschmidt, 2000)

 Raw temperatures deviate by as much as 22 ± 10°C (1δ) from the true formation temperature

 Corrected temperatures underestimate formation temperatures by as much as 8 – 9°C.

 Large standard deviations indicate that corrected BHTs (with 2δ confidence) reflect formation temperatures not better than ± 16°C.

BHTs vs. Temperature Log

Internal thermal properties of sedimentary basins

often unknown locally and regionally

More data are needed Data banking is rudimentary yet

Laboratory Measurements

Well-Log Approaches

PETROPHYSICAL WIRELINE LOGS:

Gamma-ray (API units) Density (g/cm³) Sonic (msec/ft) Neutron porosity (limestone-equiv. units)

"PETROPHYSICAL DESCRIPTORS":

Vsh : proportional volume of shale RHOmaa : apparent matrix density Dtmaa : apparent matrix transit time

PHIe: "effective" porosity

	Estimated Accuracy of Heat-Flow Determination		
	(based on methodology)		
Temperature Data The		Thermal Conductivity	Accuracy
High-precision contin. log		Core samples	± 5-10%
High-precision contin. log		Drill chip samples	± 10-15%
Several corr. BHTs		Core samples	± 10-20%
1 or 2 corr. BHTs		Core or chips	± 15-25%
H o	igh-precision contin. log r corr. BHTs	Estimated	± 30-40%
Single BHT		Estimated	± 40-50%

Deming et al. (1990)

