Combined transport experiments under in-situ conditions

T. Kohl

GEOWATT, Dohlenweg 28, CH-8050 Zürich, Switzerland Email: kohl@geowatt.com

In short:

The analysis of flow through fractured rock is a central problem of "Enhanced Geothermal Systems", EGS. Most data are derived from field experiments. There are only a limited number of laboratory experiments available and even less on a well-observable in-situ scale. The latter one require rather low rate injection rates (<0.1 l/s, depending on transmissivity) for observing the flow behaviour of a fracture group and whereas high rate injections. The present study focuses on an experiment performed by the Swiss National Organization for Nuclear Waste Disposal (NAGRA) in the Grimsel Rock Laboratory.

Location: BK Site of Grimsel Rock Laboratory (totally 12 boreholes) Dipole flow field in single fracture: injection BK5 and extraction BK15

- Advantages of the SHT experiment: • A good observation of a mid-scale experiment (~10 m)
- Heat is non-reactive tracer, not disturbing chemical equilibrium
- Independent salt & heat data by identical experiment
- Reasonable costs
- Experimental targets
- Scope calculations for design of experimental layout (Q,T,c)
- modelling & interpretation of experimental results
- The FE code FRACTure was used for interpretation of combined solute / heat transport processes.

0.0

Grimsel rock laboratory: Location of BK site

Single joint approach

No fit possible

CONCLUSION SHT Experiment

- Combined Salt / Heat Experiment was successfully conducted
- ≻ High Dispersivity lengths
- Solute data cannot differentiate between single / multiple flow zones
- High heat diffusion from matrix
- >Heat tracer most sensitive to surface area
 - likely that further transport paths prevent that parts of injected thermal energy is transported to extraction point.
 main flow path 80% / further flow 20%

Different model assumptions from single jointed to multiple heterogeneous conditions were assumed. The results indicate strongly heterogeneous transport properties with dispersion lengths in the same order of magnitude like the dipole field. The thermal match the VE520 dataset requires several partly independent flow paths, each with much larger surface than individual single fracture models. This provides clues that the heterogeneous flow in a fractured medium slows down a thermal front. Under realistic field conditions in a fractured medium a thermal breakthrough can be much slower and its occurrence is less evident in EGS type reservoirs than idealized model might predict...

Double Porosity Approach

EGS Laboratory

Combined field and laboratory experiments

Complexity of flow in fractured media

Elaboration of concepts based on well observable test conditions

Reference

Kohl T., P. Marschall & L. Rybach, 1995, The salt heat tracer experiment, in: NAGRA NTB 93-47, pp 90-125, Baden, Switzerland