

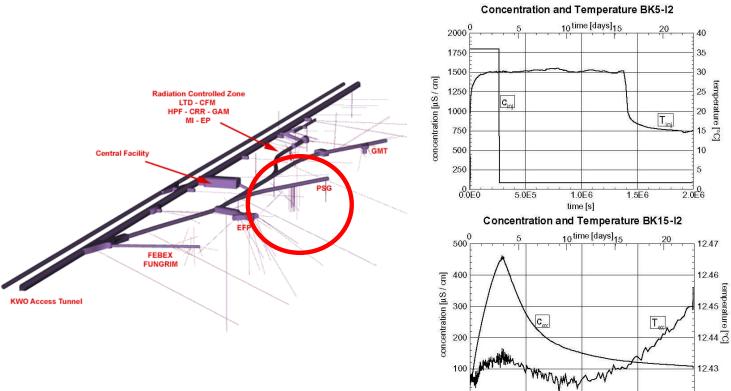
Combined transport experiments under *in-situ* conditions

T. Kohl GEOWATT AG

Dohlenweg 28, CH-8050 Zürich

Thermal / Solute perturbation on dipole flow field in single fracture

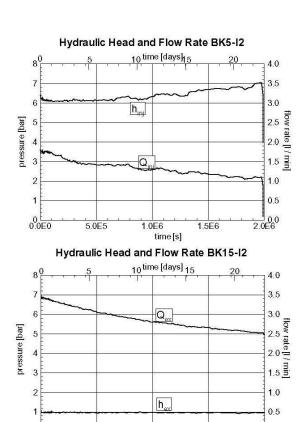
injection BK5 extraction BK15


temperature [°C]

0.0E0

5.0E5

Grimsel rock laboratory: Location of BK site


Data

0.0E0

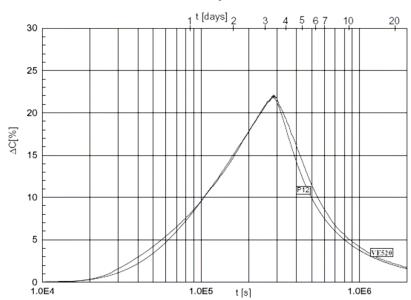
5.0E5

1.5E6

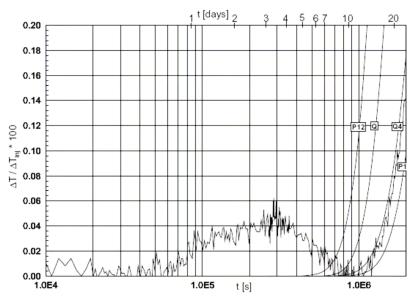
1.0E6

time [s]

2.0E6


1.5E6

Thermal / Solute transport Fitting Parameters



	K _f [m/s]	a [m]	фс	φnc	α_{L} [m]	α_{T} [m]
joint plane	2E-05	0.22	0.15	0.15	3	3
permeable matrix	2E-08	0.50	0.05	0.05	0.1	0.01

Solute Transport VE520

Heat Transport VE520

Summary SHT Experiment

Advantages

- ➤ A good observation of a midscale experiment (~10 m)
- Heat is non-reactive tracer, not disturbing chemical equilibrium
- Independent salt & heat data by identical experiment
- Reasonable costs

CONCLUSION

- successful combined salt / heat experiment
- high dispersivity lengths
- solute data cannot differentiate between single / multiple flow zones
- High heat diffusion from matrix
- Heat tracer most sensitive to surface area