Geothermal reservoir candidates in deep crystalline and sedimentary
formations: tracer-assisted evaluation of hydraulic stimulation tests
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Tracer tests provide information on transport properties essential for heat exchange in geothermal reservoirs, like fluid residence times and fluid-rock
contact surface areas — which are not properly determined by hydraulic or geophysical methods. Mostly, tracer tests can be conducted in parallel with
hydraulic or hydromechanical experiments, without major additional effort. The use of push-pull and flow-path tracing tests to evaluate the effect of

hydraulic stimulation measures is illustrated with some typical experiment settings at deep crystalline and sedimentary formations in Germany:

= real-time tracer (O
e . .
Trqﬁllf%f’.[.» = {detection on-site, =
VK™ &
voL;, ﬁ %}2 7 & if deswjé] E
> * VoL <+—— ©
LT _ 8] k out — -
injection =
pump Py 0 5 10 TII?IM%.O [chiaifo] ;
- ~S—_x —— =
C ~ L
(@] packer, if necessary
— in order to isolate ;
(@] bt B target fractures % Smgc it%on
[h] & a . a necessary
= L L ok ze—Fracture :zh/*'/_
— B flow M
r [ e . s "
/ VTN Matrix e Al
RN diffusion L
[0 oo
£ £ 0]

diffusion

principle of a single-well, tracer push-pull test

Heat versus solute tracer signals

Thermal diffusivities in low-porosity
crystalline rock exceed solute diffusivities
by at least three magnitude orders.

Thus, temperature push-pull signals reflect
intermediate- and large-scale features
(even in short-term tests), but less of the
small-scale features, whereas solute
push-pull signals are more sensitive to
small- and mid-scale features, but less
sensitive to the large-scale features
composing the fault structure.
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Urach (SW Germany), 2003: three-week, high-rate fluid injec-tion for permeability |KTB (German site of Intl. Deep Continental Drilling Program), 2004 — 2006, at

. enhancement of possibly several fracture systems in 2.8 — 4 km depth; followed by | pilot hole (VB) intersecting fracture system in 4 km depth: push-pull test (2004) in

crystalline | yacer push-pull test (~2 weeks), shut-in (~3 weeks), new outflow phase (~1 week); |depleted system, push-pull test (2005) in stimulated system, outflow phase (2006)
spiked fluid had to be disposed into same borehole in post-stimulation state; production at main hole (HB) intended as of 2007/2008
Horstberg (pilot site of BGR / GGA's geothermal demo project GenESys), 2004: | Horstberg, 2006: 1'/2 — year follow-up of short-term stimulation, with new test
short-term, high-rate injection aimed at connecting two sandstone horizons in sequence: outflow from former production horizon, shut-in, outflow from former
~3.8 km depth by large-area hydrofrac, followed by vertical flow test (~10 days) injection horizon (~1 week each)
sedimentary |GroBSchénebeck (NE Germany, In-situ Geothermal Laboratory managed by the | GroBSchénebeck, planned as of 2007: sequence of mid-term, moderate-rate

GFZ Potsdam), planned as of 2007: sequence of short-term, high-rate fracings in | flow-back (push-pull) tests in vulcanite + sandstone formations, followed by long-
vulcanite (+ sandstone) formations in ~4 km depth, followed by flow-back tests term production test
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KTB pilot hole, 2004, heat tracer test in depleted formation
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Field work contributed by Dr. M. Lodemann under extreme hardship conditions for a total of 10 weeks in Urach and
at the KTB site, technical solutions by S. Fischer, field work by J.-U. Brinkmann, intellectual support from W. Kessels

and S. Shapiro, and financial support from the German Research Foundation (DFG) are gratefully acknowledged.
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Tracer-assisted evaluation of hydraulic stimulation tests
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— experiments in sedimentary formations —

At the Horstberg site in the Northern-German sedimentary basin, a
former gas exploration borehole is now available for geothermal
research and for testing various heat extraction schemes in supra-
salinary horizons.

the hydro-frac technique, a large-area fault was created
between two sandstone horizons in approx. 3.8 km depth. Assuming
that the induced fault will maintain sufficient permeability over time
(without the need for proppants), and that the same result can be
achieved at many similar formations in the Northern-German sedi-
mentary basin, a low-cost single-well, two-layer circulation scheme is
endeavoured for heat extraction by the GGA and BGR Hannover.

In order to better characterize flow in the induced fault, a tracer test
was conducted at the Horstberg site. Extrapolated tracer recoveries
showed that up to 12% of the (more or less radially divergent) flow
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Our task:-design and dimension 4 + 1 spikings at the boreholes GS4 + GS3 such that each individual spiking yields measurable signals during each of the subsequent outflow or
abstraction phases (GS4 = new borehole, used for faulting, injectivity and sequential flow-back tests, 4 spikings; GS3 = old borehole, used for fluid disposal, i.e. reinjection, 1 spiking)
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forward simulations and sensitivity analyses, based on simplified, radially-symmetric fault model — to assist in dimensioning the tracer tests
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Tracer signals from flow-back (push-pull) tests at GS4 are more sensitive to effective aperture and specific contact-surface area (within the volume accessed by each test phase),
than to total reservoir size. Tracer signals at GS4 originating from reinjection spiking at GS3 are very sensitive to reservoir size, and also to surface/exchange parameters.
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Flux-capacity analyses indicate what percentage of reservoir flow (if derived from flow-path tracings),
or what percentage of solute or heat exchange (if derived from push-pull tests) takes place in a given
fraction of the total reservoir storage, in the form of a cumulative repartition function, sorted by fluid
residence times. This type of analysis (being well-known from reservoir hydraulics) was first applied for
interpreting tracer tests in geothermal systems in the USA by Mike Shook (2003).

more details on tracer tests conducted by the Gottingen Applied Geology Group can be found under:
www.cosis.net/abstracts/EGU06/02402/EGU06-J-02402-1.pdf
www.cosis.net/abstracts/EGU06/10448/EGU06-J-10448-1.pdf
www.cosis.net/abstracts/EGU05/10225/EGU06-J-10225-1.pdf




