Tectonic modeling of non steady-state temperature in the lithosphere
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1. Introduction 2. Kinematic model of lithospheric stretching
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non steady-state field. Very often we have thermal data (temperature, and rock TEMPERATURE AFTER STRETCHING S R e S N S SR SRS SN SO SO S S
physical properties) from shallow depth and we would like to interpolate the > _ | | _ |
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geothermal energy research (1-6 km) the temperature increase with depth is & T = |
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Lithospheric stretching results in high temperature gradient, therefore high heat flow. 20 40 60 80 20 40 60 80 20 40 60 80
Stretching is accompanied by the syn-rfit subsidence caused by isostatic restoring e P — S TS —— 0 g
forces. Later, as the lithosphere cools it results in further subsidence (post-rift or thermal - . -
subsidence) due thermal contraction. The stretching factors can be determined from the
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vitrinite reflectances can also be used to constrain the stretching factors. - - -
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3 Sedimentation
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Erosion has the opposite effect on the thermal field than the
cooling effect of sedimentation. Therefore, it is not shown 9 9 9 9 9 9 - 9 9
here. An extreme mode of erosion, the tectonic unroofing is
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shown at the model of metamorphic core complexes.
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4. Metamorphic core complex formation 5. Models of subduction
TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C) Kinematic models of subduction allow to estimate the deep lithospheric temperatures, and thus
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. . 6. Conclusions
10 10 Lithospheric stretching causes high lithospheric-, core complex formation causes high crustal

thermal gradient and heat flow. In both cases the thermal anomalies are transient and decay with
time. Immediately after the tectonic events the near surface temperature gradient varies with depth
even in case of uniform rocks. After a few million years the upper crustal temperature gradient
becomes constant. Therefore, the near surface thermal gradient can be used to interpolate
temperature to larger depth, regardless that the thermal field is not steady-state. However, the
blanketing effect of sediments results in high near surface thermal gradient, which can be
considerably smaller in the basement. Therefore, in case of sediments the near surface temperature
gradient cannot be used to interpolate the temperature to greater depth.

To increase the reliability of temperature interpolation we must know the thermal parameters of rocks
from larger depth and the geometry of the formations. Additionally, the dependence of thermal
conductivity on the temperature must be taken into account.

Thermal models of tectonic processes are useful, because due to the long thermal decay constant of
the lithosphere the present day thermal state of the lithosphere may be inherited from geologic
processes acted in the past.

Cooling of the core complex Cooling with 2 km

sediments on top.
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