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3D MT IMAGING GEOTHERMAL RESERVOIR

3-D RESISTIVITY IMAGE OF THE MINAMIKAYABE GEOTHERMAL AREA

The New Energy and Industrial Development Organisation (NEDO) has
conducted geologic, gravity, geochemical, magnetotelluric, and other
surveys in the Minamikayabe area of over 9 km’ in the southern Hokkaido,
Japan, in order to detect and subsequently develop geothermal energy
sources. In the immediate vicinity of the wells MK-2 and MK-6, over an area
of 1.2 x 1.2 km’, a high accuracy magnetotelluric survey was performed
(Takasugi et al., 1992) with an electrode separation of 100 m in a frequency
range from 0,001 to 20,000 Hz and with one side of the survey area parallel
and the other perpendicular to the coast (Fig. 1).
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Figure 1. Location scheme of the Minamikayabe survey area (after Takasugi
etal., 1992). Solid dots, MT sounding sites; double circles, wells.

Despite the development of two-dimensional inverse methods, to this day, the
approach based on the synthesis of one-dimensional conductivity profiles has
remained an effective tool for imaging in the absence of prior information.
The necessity of such an approach increases in 3-D case, when the measured
data is often deficient, and prior information is too scanty. In this situation, a
unique practical recourse, which is especially helpful for a prompt tentative
estimation of the resistivity distribution, lies in constructing a 3-D resistivity
image of the medium based on the MT fields or their transformations:

F,(F(z,,),)-TF,(F,0,) (=12,.,N,) (1)

where F' are the components of the MT field measured on the surface for NV
frequencies, 7 is the transforming operator, 7 is the MT field image, 7 is the
radius vector of the observation point, j, is the frequency, and (z,,,), 1s the
apparent depth corresponding to this frequency.

The subsequent Bostick transformation of its frequency dependence into a
depth function in fact yields the least screwed image of the three-dimensional
geoelectric structure (Fig. 2).
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Figure 2. Apparentresistivity p,,, slices.

REFINEMENT OF THE RESISTIVITY IMAGE BY MEANS OF THE BAYESIAN STATISTICAL INVERSION

The resistivity image obtained at the first stage was further refined using
Bayesian statistical inversion (Spichak et al., 1999). In the context of this
approach, both observations and model parameters (resistivities) are
considered as random variables. Bayesian analysis determines the posterior
probability density function (PDF) of the resistivity - 1.e., the conditional
probabilities of the resistivities given the data y, prior information in terms of a
resistivity palette (c,,...c,,) , prior PDF g, and the noise level €:

f(v/a)q(a)
>, .., JO/b)q(b)

p(c =a/Y =y)=

where g(a) 1s the prior probability ofthe 1mage a and f()/a) 1sa conditional
probability of the variable)y=(y,;i=1,2,....[;j=1,2,...,J) given the values of

the resistivities. Itis a function of a=(a,;k=1,2,....K)through £ and A and
could be calculated directly as follows:

16/a)=TL P - 7 B 00,0 7 01,0,,0)]} )

where p, ;15 the probability density of the noise g, .

The solution of the inverse problem is reduced to the search for the posterior
resistivity distribution by means of successive solution of the forward
problem for the prior values of the resistivities in all domains of search. The
effective algorithm developed basing on this approach (Spichak et al., 1999)
enables to construct 3-D geoelectric models by MT data (Spichak, 1999).

In order to construct the 3D resistivity model of the geothermal area full range

mversion was carried out taking into account two resistivity logs available in
the area (Figs. 3 and 4).
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Figure 4. Resistivity logging data from the

Fi 3. Resistivity logeing data from the
o v e MK-6 well (Takasugietal., 1992).

MK-2 well (Takasugi etal., 1992).

Fig. 5 shows the volume resistivity model of the geothermal area, while Fig. 6
presents highly conductive areas with resistivity values not exceeding 6
Ohm Xm, obtained on the basis of the Bayesian inversion taking into account
the resistivity profiles from the wells MK -2 and MK-6.
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Figure 5. Volume apparent resistivity p,, map (after Spichak, 2002).
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Figure 6. Highly conductive zone (resistivity is less than 6 m)
revealed by 3-D inversion of M T data (after Spichak, 2002).

It is easy to see that, firstly, they cluster in the southern part of the zone in
question, and, secondly, that their horizontal dimensions at first increase with
depth, reaching a maximum in the depth range from about 200 to 800 m, and
then decrease again.

CONCLUSIONS

Thus, two-stage inversion of the invariant apparent resistivity data based on
rough imaging followed by refinement of the resistivity distribution by means
of the Bayesian statistical inversion enabled to re-construct a 3-D geoelectric
structure beneath the Minamikayabe region and to delineate a highly
conductive zone that can be associated with the geothermal reservoir.
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MT SOUNDING OF FAULTS

DETECTION OF THE FAULT MACRO-PARAMETERS

A model class consisting of a dipping fault in the basement of a two-layer earth
with the fault in contact with the overburden is used for numerical
experiments. Six macroparameters of the 3-D model, namely the thickness of
the top layer, coinciding with the depth of the fault (D), the conductivity ratio
between the first and second layers (C1/C2), the conductivity contrast of the
fault (C/C2), and the width (W), length (L) and dip angle of the fault (4)) are
used (Fig.7).

Figure 7. 3D fault model.

Various groups of magnetotelluric field components and their transformations
are studied in order to estimate the effect of the data type used on the ANN
recognition ability. It 1s found that use of only xy- and yx-components of
impedance phases results in reasonable recognition errors for all unknown
parameters (D: 0.02%, C1/C2: 8.4 %, C/C2:26.8 %, W:0.02 %, L: 0.02 %, A:
0.24%).

The influence of the size and shape of the training data pool (including the
'gaps 1n education' and 'no target' effects) on the recognition properties are
studied. Results from numerous ANN tests demonstrate that it possesses good
enough interpolation and extrapolation abilities if the training data pool
contains a sufficient number of representative data sets.

The effect of noise 1s estimated by means of mixing the synthetic data with 30,
50 and 100 per cent Gaussian noise. The unusual behavior of the recognition
errors for some of the model parameters when the data become more noisy (in
particular, the fact that an increase in error is followed by a decrease) indicates
that the use of standard techniques of the noise reduction may give an opposite
result, so the development of a special noise treatment methodology is
required.

Figure 8 demonstrates graphs of the recognition errors for all unknown
parameters of the fault model depending on the level of Gaussian noise added
to the testing data. It is seen that minima for all curves are attributed to the
noise levels in testing data equal to those in the teaching data.
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However, since the level of noise in the real data 1s not known 1n advance, 1t 1S
important to know Zow to mix the teaching data with artificial noise. Spichak
et al. (1999) revealed that teaching the ANN by synthetic data mixed with a
noise of different levels ranging from 0% (no noise) to some level, which
exceeds the maximal one in the data, enables to diminish greatly the
recognition errors and results in robust parameters' recognition even if the
noise levels in testing and teaching data are different. In other words, prior
knowledge about the noise level in the data becomes not necessary. This is
demonstrated by the graphs in Figure 9-9 marked as (0%+10%+20%). In this
case the recognition errors for all model parameters do not exceed 5-10% even
if the level of noise in the testing data reaches 50%.

Thus, it 1s shown that the ANN-based recognition can be successfully used for
inversion if the data correspond to the model class familiar to the ANN. No
initial guess regarding the parameters of the 3-D target or 1-D layering i1s
required. The ability of the ANN to teach itself real geophysical (not only
electromagnetic) data measured at a given location over a sufficiently long
period means that there is the potential to use this approach for interpreting
monitoring data.

DETECTION OF THE HYDROTHERMAL FLUID RESISTIVITY VARIATION

Spichak (2001) studied the resolving power of MT data with respect to the
variation of the resistivity in the geothermal reservoir depending on the fault
presence.
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Figure 9. Resistivity variation at the earth's surface due to
resistivity variation in the geothermal reservoir.

Matching of a Figure 9 with a Figure 10 shows that the fluid bearing fault

strengthens the effect of fluid resistivity variation in the geothermal reservoir

approximately by three times. Moreover, it increases the diameter of a zone of

reliable monitoring and reduces the period threshold sufficient for detection

of even small variations of electric resistivity caused by temperature changes.
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Figure 10. Resistivity variation at the earth's surface due
to resistivity variation in the geothermal reservoir in the
presence of the fault.

MT GEOTHERMOMETER

Estimation of temperature in the Earth's interior 1s usually based on the ground
heat flow data and assumptions on the vertical temperature gradient.
Meanwhile, in geothermal areas characterized by significant fluid migration
this approach may fail. Spichak et al. (2006) have developed an alternative
way based on incontact temperature estimations using the measurements of
magnetotelluric field on the Earth's surface. Basing on the neuronet analysis
of MT and temperature data measured at the Bishkek geodynamical test site in
the northern Tien Shan (Fig. 11, Fig. 12), a feasibility of indirect
electromagnetic geothermometer is substantiated.
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Figure 11. Location scheme of MT sites and wells for which
temperature data were available.
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Figure 12. Dependences of the electric conductivity
(dashed line) revealed from MT data and temperature (solid
line) on the depth.

An optimal technique for MT measurements and involvement of temperature
logs available was developed. This technique provides a reduction of the
remote temperature estimation errors down to their minimum level. Figure 13
displays variations of relative rms error of the temperature prognosis in the
well for the case of only temperature data used (triangles) and for the case of
joint use of electromagnetic data together with temperature logs (dots).
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An optimal technique for MT measurements and involvement of temperature
logs available was developed. This technique provides a reduction of the
remote temperature estimation errors down to their minimum level. Figure 13
displays variations of relative rms error of the temperature prognosis in the
well for the case of only temperature data used (triangles) and for the case of
joint use of electromagnetic data together with temperature logs (dots).

It was shown that the use of 6-8 temperature logs for calibration of
electromagnetic data results in 12% relative error of the temperature
estimation (Fig. 14), whereas availability of prior geological information
about the region under study makes it possible to decrease this error
furthermore.
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Practical application of this method will enable one, first, to refine the
temperature estimates in cases when the amount of temperature logs available
1s nsufficient; second, to perform more precise temperature prediction in
extrapolation mode; third, to monitor the well temperature basing on surface
observations of MT field and, at last, to carry out contactless remote
estimation of temperature in wells in the regions with extreme conditions
unsuitable for traditional geothermometers.

CONCLUSIONS

Magnetotelluric sounding of geothermal areas enables:

3D imaging geoelectric structure;

mapping geothermal reservoir;

detection of the fluid bearing faults;

monitoring variations of the system macro-parameters;
indirect estimation of the sub-surface temperature.
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