
Sub-/Seismic Structure and Deformation Quantification on different scales

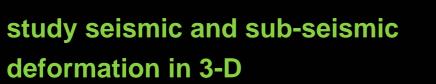
from 3-D reflection seismics in the North German Basin

Charlotte Krawczyk¹, T. Lohr¹, D. Tanner², H. Endres^{3,4}, R. Samiee⁴, H. Trappe⁴, O. Oncken¹, P. Kukla³

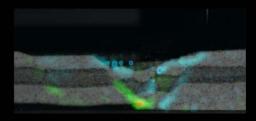
(1) GFZ Potsdam

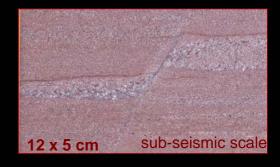
POTSRAM

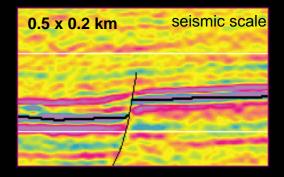
(2) GZG Göttingen


(3) RWTH Aachen

(4) TEEC Isernhagen



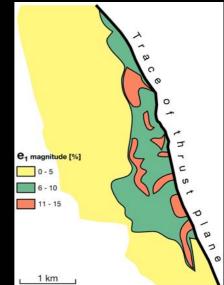

Basin evolution depends on


- (a) magnitude of deformation,
 - (b) strain accumulation in space and time,
 - (c) processes controlling (a) and (b) under varying kinematic constraints.

quantify distribution, magnitude and accumulation of strain over variety of scales

Workflow 'sub-/seismic deformation analysis'

- (1) Seismic interpretation structural architecture and tectonic evolution
- (2) Kinematic 3-D retro-deformation quantify strain magnitude and distribution
- (3) Geostatistic tools quantitative fracture prediction
- (4) Analogue deformation experiments evolution of strain over time
- (5) Validation of results


predict hydrocarbon pathways and storage

Strain distribution and quantification

Seismic data, processing results and modelling examples cannot be shown here for confidentially reasons of industry data.

Results to date are:

- hanging-wall deformation is strongly controlled by 3-D fault morphology
- areas of high and low deformation are imaged
- deformation affects area up to 1.3 km away from fault
- e1 magnitude: 15% after 100 m displacement, 25-30% after 200 m displacement
- location of strain concentration does not change
- deformation evolves from localized zones to areas of more distributed strain

