

In situ Geothermal Laboratory

Brecht 1999)

basement

Deformation front

Deformation front

Operations overview

open hole proppant frac

Jan/Feb 2002

- production test / logging
- 4130-4190m (frac 1)
- 4080-4118m (frac 2)
- production test / logging

open hole waterfrac start Jan/Feb 2003

- 3874-4294m, borehole instability
- production test

cont. Nov/Dec 2003

- 4135-4309m
- production test / logging

Dec 2004

injection test

April 2006 to Jan 2007

O drilling 2. well

On the way to an operating doublet

well path of second well

- designed as deviated well
- in direction of minimum horizontal stress
- to optimize performance of doublet

aim

- maximization of flow rate
- for 30 years
- avoid thermal short circuit

scheduled fracture treatments

- designed to achieve PI > 30 m³/(h*MPa)
- sufficient for geothermal power production on economic level

EGS Gross Schoenebeck

Borehole Design of the Research Well

Lessons learned

 drilling a large diameter borehole in sheet silicate bearing rocks (sequenzes of sand/sandstones and clay/mudstones)

 directional drilling through and beneath rock salt formations with plastic behaviour

 Adaptation to encountered geological conditions requires the variability of mud concepts with the goal of minimized formation damage

Large top hole diameter affected ROP

Insufficient pumping capacity in the top hole region (23") lead to bit balling resulting in a ROP of 4...7 m/h and an increased number of trips.

Improper bit selection reduced ROP in

the mesozoic section (16").

disastrous cementation of 16"x13 3/8" casing

Total fluid loss occured during the cementation of the combined casing 16" x 13 3/8" despite of a slurry density of 1450 kg/m³ (Litefil by Schlumberger) due to plugging of the annulus by debris

temperature logs

Conclusion:

Free pipe will not stand the thermally induced stresses to be expected (buckling). Free floating pipe is not acceptable.

Recovery of casing cementation

To prevent casing damage in the future of the production well a reverse squeeze cementation through the annulus was designed and successfully performed:

- 1. Free point
 estimation and
 cement bond
 log verified top
 of cement
 - Fluid loss
 during injection
 occurs near to
 top of cement
 Slurry density
 of squeeze
 cement with
 1,30 below
 density of mud

to be displaced

POTSDAM

Well design concepts for deep geothermal wells

Casing collapse within the rock salt

9 5/8" liner collapsed during drilling into the target formation after reduction of mud density from 2000 kg/m³ to 1060 kg/m³ (Heavy deformation between 3880...3200 m)

Cause of collapse

- Casing design according to the rules with an overburden pressure gradient of 2,3
- Casing material successfully inspected
- Anisotropic tension due to well path geometry unlikely according to cross-correlation
- Anisotropic tension due to rock salt inhomogenities within the salt dome in connection with the geomechanical impact of drilling not verifiable
- Anisotropic tension due to improper cementation of the deviated well not very probable due to no. and positioning of centralizers and cementing procedure strictly following the simulation

Remedy for the collaps

The loss of one casing dimension forced to adjust the borehole design drilling of the Rotliegend section with 5 7/8" and running and cementing of an combined 5" liner with an uncemented section of preperforated pipes on bottom.

Conclusions

Cost effective drilling of geothermal wells means

- Considering all costs emerging over the lifetime of the well
- #Design the well as tall as possible but leave one ace upon your sleeve
- #With highly corrosive fluids provide demountable coated or lined production/injection strings
- #Particularly to geothermal producers and injectors adapted repair technologies for casings should be available

Tubingless insert

nimizes well diameter

Is the geothermal "industry" strong enough to demand such developments?

Repair of cemented casings

Reasons

- Internal corrosion due to air access during production/injection
- Closing of perforations etc. (e.g. after secondary cementing)

Means and technologies of expandables are to be worked out and assessed in cooperation with experienced players:

- # Cladded liners (casing patch)
- # Downhole coating of casing
- ## Downhole relining of casing with thin (folded) metallic liners

