
CONCLUSION 
The dynamic behavior of EGS systems is evident from numerous 

measurement. The role of numerical modeling is extends from 
quantifying subsurface processes to forecasting the varying impact

Different modeling approaches have been used to determine the 
impact of physical processes
An EGS reservoir behaves dynamic throughout its lifetime
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Outlook
Complex inversion concepts can be used jointly with experiments to 

investigate subsurface
Modeling will be used to improve EGS strategies
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Numerical Discretisation

In short:

A central problem of "Enhanced Geothermal Systems", EGS, represents the understanding of 
processes associated to the forced injection of cold fluid in a fractured medium. The dynamic 
response of a geothermal reservoir is determined from time constants specific to individual 
processes. As such, the hydraulic pressure is most important for short-term reservoir variations 
and temperature for long-term variations.

The quantification of these processes is in the reservoir volume generally only accessible through 
numerical modeling. Pressure, temperature and stress can only be measured locally in a 
borehole, but the full 3D distribution of these fields is hidden.  Typical modeling approaches are: 

• Deterministic reservoir models with good control of all physical processes but problematic 
complex meshing and often simplified geometries

• Stochastic reservoir models having a refined representation of fractures/fault zones but 
neglecting often matrix interaction. They often include hybrid approach using interpolation 
schemes to map individual properties on another process

Herein, elaborated examples of these modeling are presented on stochastic (short-term 
hydraulic-mechanic behavior, H-M) and deterministic (long-term hydro-thermal-mechanic 
behavior, H-T-M). 

These examples are calculated with the FRACTure and HEX-S simulators that are using an 
identical finite element kernel.

Deterministic Reservoir Model: FRACTure

Coupling Schemes for EGS Reservoir models

Dynamic Reservoir Behavior

Fracture model

Dynamic Reservoir Behavior
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Interaction of H-T-M processes on pressure field

Injection of cold fluid in a hot rock matrix

Thermo-elastic matrix stresses

Injection of pressurised fluid in ambient matrix

Poro-elastic matrix stresses
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Mixed Deterministic-Stochastic Reservoir Model: HEX-S

Penny-shaped cracks 
with individual slip patches

Coulomb Shear Criteria
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Jacking Aperture: σn,eff <0
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