
* High variability !!
* Trend

RMS / hmoy∈ [0;0.35]

RMS / hmoy >0.35
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GEOTHERMAL EXPLOITATION

The context of study is an area where stream lines and isobars would be flat if the fracture were plane. 
For example, it could take place in the framed area between injection and pumping wells.

Then we will see how the roughness of the fracture modify the hydraulic flux
and the thermalization as well.
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ABSTRACT

Heat exchange during laminar flow is studied at the fracture scale on the basis of the 
Stokes equation. We used a synthetic aperture model (a self-affine model) that has been 

shown to be a realistic geometrical description of the fracture morphology. We 
developed a numerical modeling using a finite difference scheme of the hydrodynamic 
flow and its coupling with an advection/conduction description of the fluid heat. As a 

first step, temperature within the surrounding rock is supposed to be hot and constant. 
Influence of the fracture roughness on the heat flux through the wall when a cold fluid 

is injected, is estimated and a thermalization length is shown to emerge. Our model 
shows that fracture roughness is responsible for channeling effects. Fluid flow is 

dominant in a significant subpart of the fracture where heat advection is important. 
Accordingly, temperature distribution is strongly affected by small fluctuations of the 

fracture aperture.
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HYDRAULIC FLOW

• Permanent 

• Laminarity

• Lubrication => locally smooth surface

• Velocity

• Hydraulic flow 

• Incompressibility : 

� Equation to be solved (2D) :

vP
rr

∆=∇ η

















=
0

),,(

),,(

zyxv

zyxv

v y

x
r

Stokes :

P
h

dzvu
h

∇−== ∫
rrr

η12

3

0)),(.( 3 =∇∇ Pyxh
rr

Local parabolic law

Local cubic law

0. =∇ u
rr

• Boundary conditions
– Impermeability

– (PL – P0) imposed between the outlet and the inlet
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ENERGY CONSERVATION

• Conduction

• Convection

• Assumptions:
* Tw constant and invariant

*  => In plane convection

* Normal to plane conduction

* Lubrication 

• Local temperature law
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2D-TEMPERATURE LAW

• Energy conservation

• Boundary flow
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�Nusselt number

where

�Equation to be solved (2D)

VARIOUS REALIZATIONS FOR THE SAME RMS AND THE 
SAME MEAN : High variability at the same macroscopic parameters

SAME REALIZATION WITH AN INCREASING
ROUGHNESS AMPLITUDE AND SAME MEAN

RMS = 0.05 <h> RMS = 0.15 <h>

• Boundary conditions
– T = T0 at the inlet

– T = Tw far away from the inlet

– T = Tw on the walls

METHOD
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Analytic solutions
REFERENCE CASE
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ROUGH FRACTURE : SELF AFFINE APERTURE

Where g gives the probability to get a 
height difference ∆h between two 

coordinate points separated by [∆x,∆y].
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Property in spatial domain

Property in Fourier domain
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• Discretization

• Systems solved with the biconjugate gradient method
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METHOD OF RESOLUTION
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Apertures
Temperatures, Hydraulic flux 

a : Aperture mesh size

Properties of fluid :
Density [kg/m3] : ρ

Conductivity [W/m/K] : λ
Specific heat capacity [ J/kg/K] : c

Diffusivity [ m2/s] : χ = λ / (ρc)

System length : lx > 20.lref

Number of steps per reference length: Nmesh/lref>25

• Dimensionless variables

* Aperture : 

* Pressures :

* Hydraulic flux :

* Temperatures :
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Averaging over thickness

Range of validity
• ρ constant 

Low thermal dilatation coefficient

• z Conduction >> (x,y) Conduction
Re >> 1.2

• x Conduction << x Convection
Re >> 0.43

• Lubrication
Re << 102

• No heat source because of viscosity

Re << 4.104 for ∆T=100 C 
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EQUIVALENT PROBLEM AT COARSENED SCALE
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• Or

RMS = 0.25 <h>

lref int =27.4 u.
lref min=32.2 u.

lref int = 24.5 u.
lref min= 29.0 u.

lref int = 24.3 u.
lref min= 25.9 u.

As reference case, the fracture is modeled by two parallel plates which are 
separated by a distance h with a pressure P0 at the inlet and PL at the outlet.

RESULTS

RMS = 0.35 <h>

lref int =10.7 u.
lref min=12.5 u.

lref int =28.4 u.
lref min=31.7 u.

lref int =16.0 u.
lref min=17.1 u.

A :         (Weighted mean)
B :         (Minimum)

)(xT

)(' xT

C : Linear regression of A    
D : Linear regression of D 

Ref : T(x) for parallel plates with the same mean
lref = 25 u.

A :         (Weighted mean)
B :         (Minimum)

C : Linear regression of A    
D : Linear regression of D 

Ref : T(x) for parallel plates with the same mean
lref = 25 u.

Isobars

-ln (T* bar)

• From the energy conservation
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CONCLUSION 

1D-temperature :

ζ : Roughness exponent

ζ ≈ 0.8

• Channeling of

* Hydraulic flow
* Temperature

• Characteristic length of thermalization

Various realizations
Various RMS
Same mean
Same size of system

STATISTICAL RESULTS WITH

Parallel
plates

Reference
with flat fracture

Obtained
with rough fracture
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of thermalization ?

x

)(xT

RMS / hmoy RMS / hmoy

� Thermalization slightly slower
�Thermalization disturbed by the roughness

�Thermalization enhanced
� Thermalization controled by small apertures 

RMS / hmoy >0.352

• Improving of the present study
* Hydraulic aperture influence ?
* Shape of the system ?
* Variation of Wall temperature
* Using ρ(T) dependance

• To provide a characteristic length for coarsened scale

PROSPECTS
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