Workshop 2

2D inversion of a magnetotelluric profile in Travale geothermal field using invariant responses

José M. Romo-Jones*, Adele Manzella** and Catalina Mayorga**

* Depto. Geofísica Aplicada, CICESE, México
** CNR, Istituto di Geoscienze e Georisorse, Italy

Abstract

We utilized a magnetotelluric profile in the Travale geothermal field, in Tuscany, Italy, to obtain a resistivity model using 2-D inversion of the series and parallel (S-P) invariant impedances. The aim was to compare the performance of the S-P responses with 2-D inversion of conventional TE and TM impedances. Resembling TE and TM responses, S-P are complementary, as series impedance is more sensible to galvanic effects while parallel is to designed to minimize the data misfit at the same time as the model is kept as smooth as possible. The trade-off between data misfit and model roughness is balanced by a regularization factor. We changed this factor in a search for the model with the best tradeoff between data misfit and model roughness. TE and TM impedances were inverted using the algorithm of Rodi and Mackie, after rotation of data toward the main strike direction of the area. The resulting TE-TM and S-P model shows many similarities in defining resistivity anomalies at both shallow (500 m) and deep ($1-5 \mathrm{~km}$) depth. The 2 D models show resistivity anomalies that correlate with zones of high permeability and fluid content representing exploited geothermal reservoirs. The shallow resistivity anomalies show a good correlation with the shallow geothermal reservoir, located in carbonate units. The anomalies are particularly visible in correspondence of the faults, suggesting an increase of permeability, a pathway for fluids and possible related alteration minerals. The most conspicuous feature of the 2 D models is the presence of low deep reservoir is made of sparse fractures and hosts superheated steam.

Geological setting

Travale geothermal field, in Tuscany Italy, belongs to the famous geothermal region of Larderello. Here the permeability is susully low and exploited: a shallow reservoir within catacilastic levels of the carbonate exaporitic rocks of the Tuscan complex, and a deeper, more extensive reservoir defined by fractures within the metamorophic rocks, at depths of
more than 2 km . In this orea the explocation targets
are mainly
located in more than 2 km . In this area the explorotion targets are mainly located
metamorphic
rocks down to 4000 m depth, charactererized by very high
 complexes have been recognized: 1) Miocene-Pliocene and Quaternary sediments, filing extensional tectonic depressions; 2) the Ligurian complex
Consisisting of Jurassic ophoilite rocks its sedimentary Jurassic-Cretaceous
 complex, includuing sedimentary rocks from Late Triassi--Jurassic evaporitic and carbonate rocks to Late Oligocere-Early Miocene turbidities: and 4)
substratum, principally known through geothermal drillings composed of two
 made up of Triassic quartzites and phyllites (Verrucano group), Palcaeozic phyllites and micaschist: the lower one corresponds to the Gneiss complex
Details of geology may be found in the poster from Giolito e tol., in this same
workshop., in order to characterize the resistivity distribution of the
On
geothenemal Systhems ($320-0.001 \mathrm{~Hz}$).

Invariant responses
In geologically complex zones, like those prevalent in many geothermal zones, The physicial properties of the rocks have complicated geometrical
distributions. The traditional 2-D approach for magnetotelluric interpretation oversimplify the problem and utilizes only one par
in the measured impedance tensor In this work we applied a transformation to the impedance tensor, which
In reduces the tensor into two complementary impedances and two angular
response functions (Romo et al 2005). This new representation of the MT response functions (Romo et al, 2005). This new representation of the MT
responses is valid regardless of dimensionality and, unlike conventional TE and TM polarization modes, do not depend on rotations of the measuring reference system. In addition, the so-called Series and Parallel impedances are complementary to each other, in a similar way as TE and TM modes are
complementary in ideal 2-D situations.

The 3-D problem
In a 3-D situation,
polarization modes.

3-D data	The pseudo-TE and pseudo-TM impedances resulting from ad-hoc procedures (Swift, 1967; Groom and Bailey, 1991, etc) oversimplify the data, leading to an incomplete description of the 3-D media.	$\begin{array}{cc} 0 & Z_{\mathrm{TE}} \\ -Z_{\mathrm{TM}} & 0 \end{array}$
$\left(\begin{array}{ll} Z_{x x} & Z_{x y} \\ Z_{y x} & Z_{y y} \end{array}\right)$		3-D
	The use of the full tensor in 3-D inversion codes is expensive, as we have to deal with four complex functions of frequency.	$Z_{y x}$

Thus, it is convenient to have a way to estimate two representative impedances,
hopefully keeping most of the information contained in the measured tensor. Following Romo et al. (2005), the transformation

$$
\mathbf{R}_{e} \mathbf{E}=\mathbf{R}_{e} \mathbf{Z} \quad \mathbf{R}_{h}^{\mathrm{T}} \mathbf{R}_{h} \mathbf{H}
$$

with $\quad \mathbf{R}=\left(\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ and $\theta=\alpha+i \beta$
\qquad

The transformed responses can be readily calculated from the original tensor by

$$
\begin{array}{ll}
Z_{s}=\left(\frac{Z_{x x}^{2}+Z_{x y}^{2}+Z_{y y}^{2}+Z_{y x}^{2}}{2}\right)^{1 / 2} & \bar{\theta}=\operatorname{atan}\left(\frac{Z_{y y}-Z_{x x}}{Z_{x y}+Z_{y x}}\right) \\
Z_{p}=\mathbf{2} \frac{Z_{y x} Z_{x y}-Z_{x x} Z_{y y}}{\left(Z_{x x}^{2}+Z_{x y}^{2}+Z_{y y}^{2}+Z_{y x}^{2}\right)^{1 / 2}} & \Delta \theta=\operatorname{atan}\left(\frac{Z_{y y}+Z_{x x}}{Z_{x y}-Z_{y x}}\right)
\end{array}
$$

Data Inversion

We inverted Z_{s} and Z_{p} impedances using a regularized 2-D inversion algorithm, based on Gauss-Newton optimization, written by Rodi and Mackie (2001) and
adapted by Romo et al. (2005) to invert the S-P responses. The optimization adapted by Romo et al (2005) to invert he s-P responses. The optimization
process minimizes the following objective function
$S(\mathbf{m})=\underbrace{(d-F(\mathbf{m}))^{T} \mathbf{R}_{d d}^{-1}(d-F(\mathbf{m}))}+\tau \underbrace{L\left\|\left(\mathbf{m}-\mathbf{m}_{0}\right)\right\|^{2}}$

The solution space was explored with different regularization factors in order to
find the best tradeoff between model roughness and data fitness. This was chosen using the L curve criteria.

The figures below show Apparent resistivity and Phase pseudosections comparing model response with observed data. We also show the misfit pseudosection. The largest misfit corresponds
period beneath sites $k 3$ and $k 4$.

TE and TM data inversion
Relatively stable regional strike estimates defined a principle direction of - 45° from magnetic north at most of the sites. Since the main tectonic strike in the
area is in NW-SE direction, a regional 2 D structure elongated in a NE -SW area is in NW-SE direction, a regional L-D Structure elongated in a NE-SW
direction is a reasonable first approximation. After retrieving the regional Strike direction, all data were then rotated in the N45 W direction and TE and TM impedances were estimated.
Conventional TE and TM data inversion was also conducted using the complex conjugate algorithm by Rodi and Mackie (2001). The resulting model is shown
below below.

Discussion and Conclusions

The figures below show a) S-P resistivity model, b) TE-TM resistivity
model and c) geological cross section.
Agreements:

1) A resistive anomaly corresponding with granite uplift at the central part of the profile, beneath $\mathrm{k} 5, \mathrm{k6}$, jo.
A conductive anomaly beneath 92^{2} corresponding to the deep
exploited geothermal reservoir $\left(250-300^{\circ} \mathrm{C}\right.$).
2) The shallow conductive zone at the eastern end is in very good greement with the structural attitude of the blocks dropping dow
toward the east and with the shallow geothermal reservoir Disagreements:
The geological section beneath $\mathrm{k}, \mathrm{k} 2, \mathrm{k} 3$, in the western part of the profile, shows an homogeneous earth, while the S-P model images
conductive anomaly extending horizontally between $1-2 \mathrm{~km}$ depth. In the same area the TE-TM model shows a resistive anomaly. A major fault inferred betwe 11 ind k is not present in the $\mathrm{S}-\mathrm{p}$ model, but it is in the TE-TM model
The S model shows a deep vertical conductive feature going up
beneath $\mathrm{k3}$, $\mathrm{k4}$, which is no present in the TE-TM model (or may be is shifted westward to appear beneath k2?)

Other facts:

1) the disagreements are located in the western side of the profile, Where data (kl ,
at long peri and kJ) are more spaced and 7 km depth, and The deep conductive anomaly going upwards from 7 km depth, and
bordering the western flank of the granite uplift, looks very uggestive of a major sensitivity test (a future task).

References

Rodi, W. and R. L. Mackie, 2001. Nonlinear conjugate gradients
algorithm for 2-D magnetotelluric inversion, Geophysics 66: 174-187 p. Romo J. M., Gómez-Treviño E. and Esparza J. F., 2005 Seris Romo J. M.. Gómez-Treviño E. and Esparza J. F., 2005. Series and
paralleel transformations of the magnetotelluric impedance tensor
Phat parallel transformations of the magnetotelluric impedance tensor.
Physics of the Earth and Planetary Interiors, 150, 63 -83.

