Feasibility of using supercritical CO₂ as heat transmission fluid in the EGS integrating the carbon storage constraints

Mohamed Azaroual¹, Karsten Pruess² & Christian Fouillac¹

¹ BRGM (French Geological Survey), 45060 Orléans, FRANCE

² Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Volterra, 1 – 4 April 2007

Outline

- > Storage capacities of different geological options
- > EGSCO2 concept and relevant works (papers)
- > Advantages of CO₂ as heat transmission fluid
- > Structure of the CO₂ injection well bore
- Main physical chemical processes and water rock interactions
- > Possible weak points: efficiency and security
- Need to develop a hybrid concept combining advantageous of CO₂ as a heat transmission fluid with CO₂ geologic storage
- Concluding remarks

CO₂ Storage potential for different geological options

> Hydrocarbon reservoirs (declining oil and gas fields)

675-900 Gt CO₂ ~45 % of emissions until 2050 (BAU*)

> Unminable coal seams

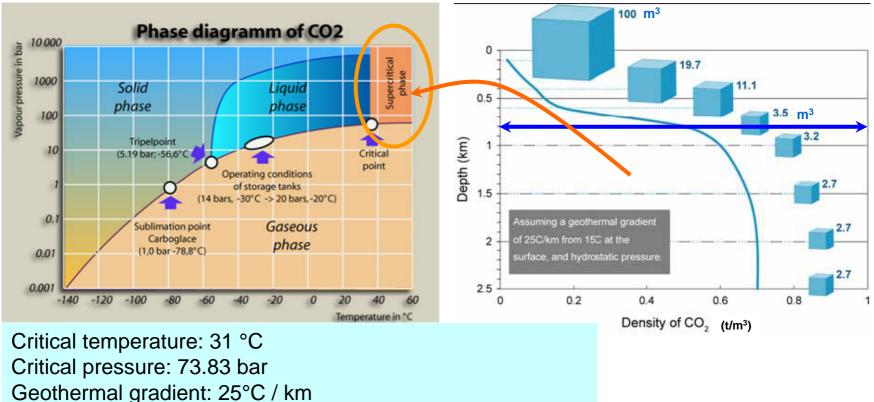
• 15-200 Gt CO₂ ~2- 20% of emissions until 2050 (BAU)

> Deep Saline Aquifers

100-10 000 Gt CO₂ 20 to 500% of emissions until 2050 (BAU)

> Combining geothermal heat recovery and permanent CO₂ storage looks extremely promising

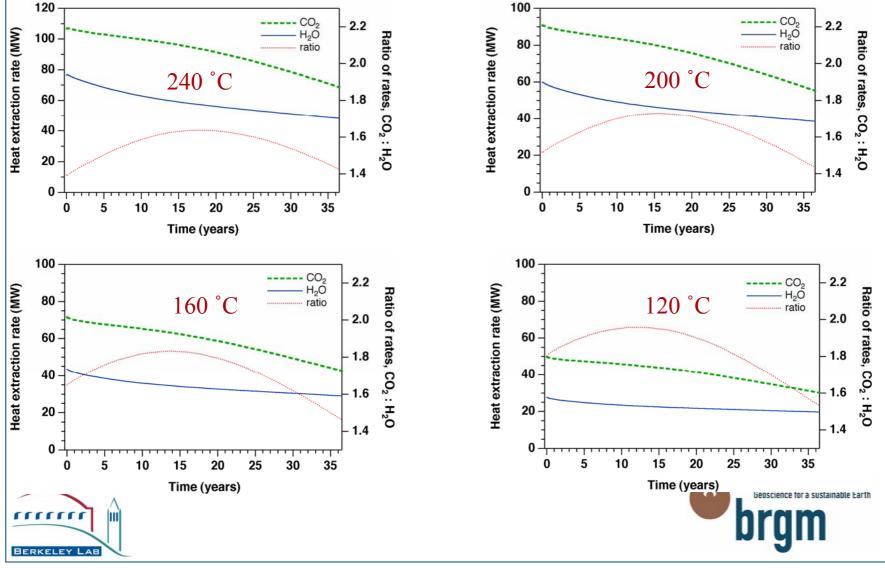
* Business-As-Usual



EGSCO2 concept and relevant works (papers)

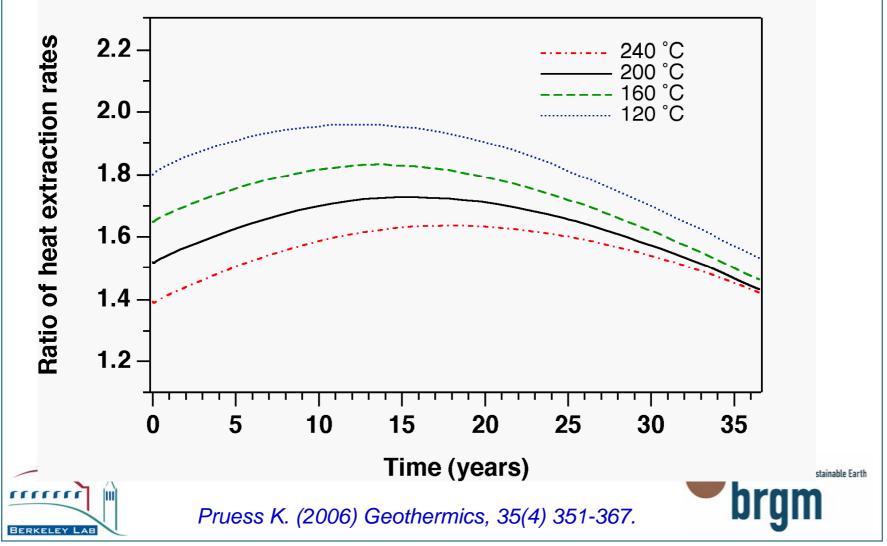
- Brown (2000) A Hot Dry Rock geothermal energy concept utilizing supercritical CO₂ instead of water. 25th Workshop on Geothermal Reservoir Engineering, Stanford, California (January 24-26, 2000)
- Fouillac et al. (2004) Could sequestration CO₂ as be combined with the development of EGS? 3rd Annual Conference on CCS, Alexndria, (Via, May 3-6, 2004).
- Veda et al. (2005) Experimental Studies of CO2-Rock Interaction at Elevated Temperatures under Hydrothermal Conditions, *Geochemical Journal*, Vol. 39, No. 5, pp. 417–425.
- Merkel et al. (2005) Compilation of contributions on scCO₂ & Hot Dry Rock (in German language).
- Pruess and Azaroual (2006) On the feasibility of using scCO₂ as heat transmission fluid in an engineered HDR geothermal system. 31st Workshop on Geothermal Reservoir Engineering, Stanford, California (Jan. 30 – Feb. 1, 2006)
- Pruess (2006a) EGS using CO₂ as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon. *Geothermics*, Vol. 35, p. 351-367.
- Pruess (2006b) EGS with CO2 as the heat transmission fluid—A game-changing alternative for producing renewable energy with simultaneous storage of carbon. Philadelphia GSA Annual Meeting (22-25 October 2006).
- Kühn et al. (2007) Mineral trapping of CO₂ in operated hydrogeothermal reservoirs.
 EGU 2007, Vol. 9, A-09207.

Advantages: properties of supercritical CO₂

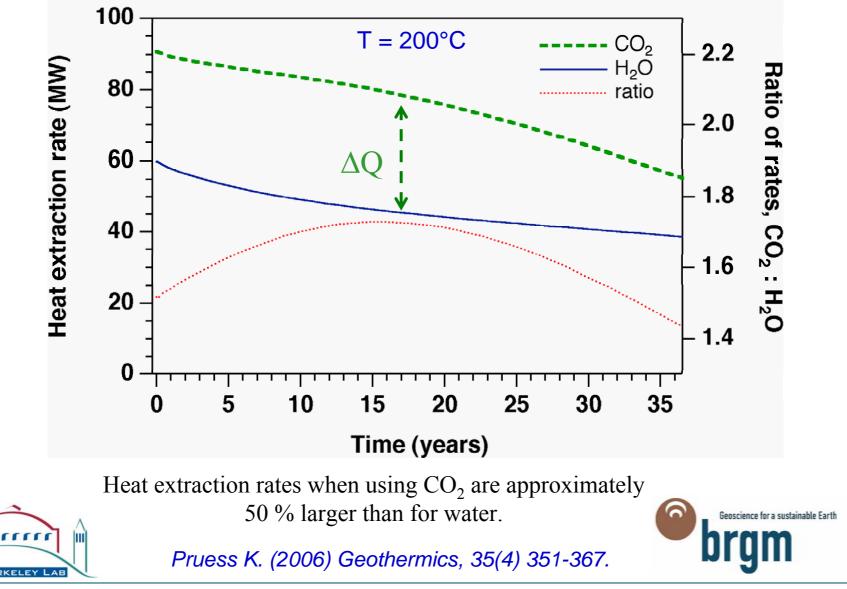


Hydrostatic pressure gradient: 100 bar / km Mean depth below which the CO_2 is supercritical: ~ 800 m

Supercritical CO₂ occupies a much smaller volume than under gaseous state, its upward migration tendency is less due to its density which is very similar to basin


fluid densities Increase in storage capacity and security

Heat extraction from different reservoir temperatures (CO₂ vs. H₂O) at 500 bar (~ 5 km)

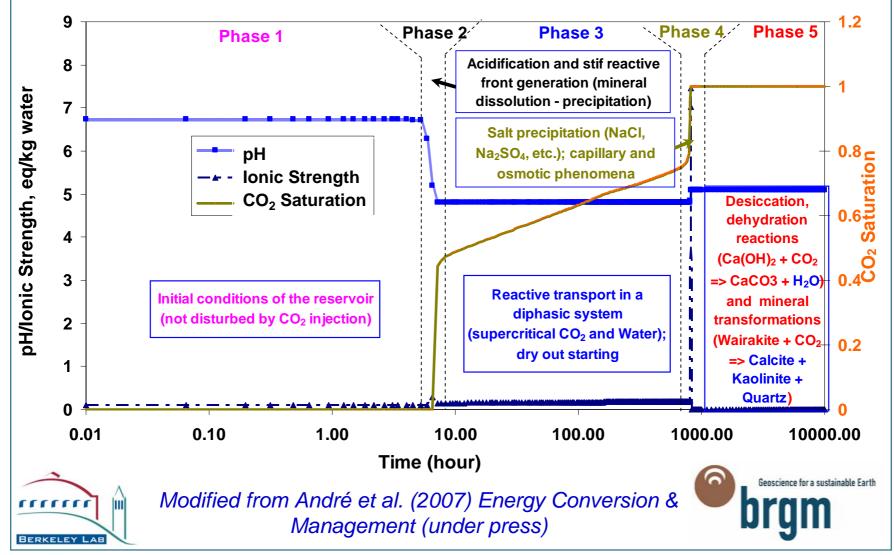


Volterra, 1 – 4 April 2007

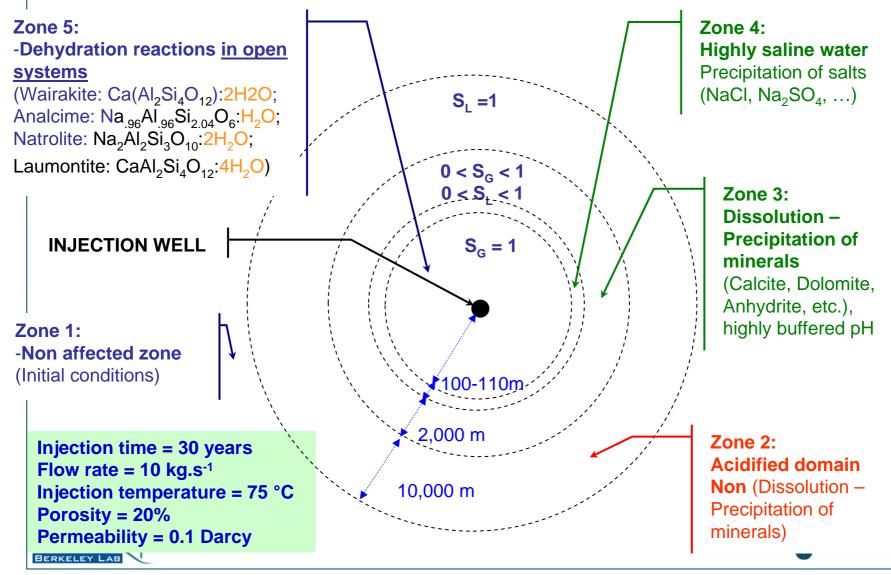
Ratios of net heat extraction rates (CO₂ vs. H₂O) for different initial reservoir temperatures

Comparing Heat Transmission Fluids (CO₂ vs. H₂O)

EGS: Comparing Heat Transmission Fluids (CO₂ vs. H₂O)


property	CO ₂	water	
ease of flow	lower viscosity, lower density	higher viscosity, higher density	
heat transmission	smaller specific heat	larger specific heat	
fluid circulation in wellbores	highly compressible and larger expansivity ==> more buoyancy	low compressibility, modest expansivity ==> less buoyancy	
fluid losses	earn credits for storing greenhouse gases	costly	
chemistry	poor solvent; significant upside potential for porosity enhancement and reservoir growth	powerful solvent for rock minerals: lots of potential for dissolution and precipitation	

Favorable properties are shown **bold-faced**.

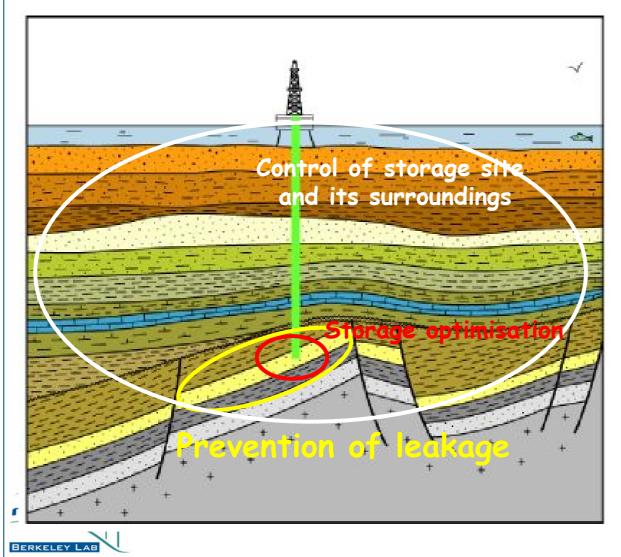

Temporal evolution of reactive fronts captured at 10 m from CO₂ injection well

Volterra, 1 – 4 April 2007

			nd the CO ₂ i ction (geocl	-	ell bore after ocesses)
CO ₂ Injectio well	on	Moving	and growir	ng zones ir	n time
	Zone 5	Zone 4	Zone 3	Zone 2	Zone 1
S	₃ = 100 %	S _G = 98 % S _L = 2 %			100 %
D	esiccation	Desiccation (Evaporation) ↓ High saline pore water	Two phase mixture pH buffered by pCO ₂ (3.5 to 5.5)	Acidified aqueous CO ₂ rich solution	Initial aqueous solution
	↓ Mineral hydration	Massive precipitation of salts in micropores	Mineral dissolution - precipitation	Mineral dissolution (carbonate, alumino- silicates	Thermodynamic equilibrium (mineral – aqueous solution)
	Maximum heat extraction	Increase of exchange surface	Very reacti	ive zones	Initial conditions

Schematic thermo-hydro-chemical simulation results (Injection of CO₂ in saline aquifer)

Volterra, 1 – 4 April 2007


Carbon storage capacity of the EGSCO2 & energy efficiency

- Simulations using reference case (Trej = 20°C; Tpro = 200°C; Efficiency ~ 0.45) of long-term EGSCO₂ circulation showed:
 - One needs CO₂ circulation at a rate of 20 ton/s for 1,000 MW of electric power,
 - For 1 year, the fluid loss (sequestered) rates decrease from 12 to 7%,
 - For long-term, the reasonable loss is about 5% of injection rate (1 ton/s per 1,000 MW of electric power),
 - This corresponds to CO₂ emissions of about 3,000 MW of coal fired generation,
- > 1,000 MW (electric) of EGSCO2 could store all the CO₂ generated by 3,000 MW of coal-fired power plants.

Possible weak points: efficiency and security of geological storage of CO₂ for several centuries

- > Understanding all phenomena
- > Site selection
- > Predictive modelling
- Monitoring methodology for security and trading
- > Risk assessment, mitigation & remediation

Specific characteristics of geological storage of CO₂ in geothermal reservoirs

- Leakage prevention is a prerequisite for the concept of Geological Storage of CO₂
- Fractured reservoirs may present preferential flow paths for CO₂ movement with proven cap rock relevant for the CO₂ storage
- The integrity of geothermal fractured reservoir will be of paramount importance for the robustness of the combined geothermal and CO₂ storage hybrid concept
- Water-Rock Interaction kinetics and mass transfer between phases are very fast for HT/HP & high CO₂ concentrations

Some criteria for security

> Security will be optimal

- Storage sites are selected after a thorough and careful geological study, they must present certain structural properties and be in zone with low seismic risk
- Long term predictive modelling of the reservoir property changes by CO₂ injection must be performed
- Well completion (steel casing, cement) must be specially designed
- Pre-existing wells in the storage area must be known and their conditions assessed
- A strategy for Monitoring Mitigation Verification must be established and implemented before starting CO₂ injection

Geoscience for a sustainable Earth

Volterra, 1-4 April 2007

Estimating, Verifying and Emissions from CO₂ storage sites

- Seology of storage site needs to be precisely evaluated and local and regional hydrogeology and leakage pathways identified
- > Potential leakage will be evaluated based on site characterization and realistic modelling that predicts reactive movement of CO₂ over time
- Establish an adequate monitoring plan which should identify potential leakage pathways, measure leakages and validate/update models

Conclusions & Remarks (1/2)

- > Based on its thermophysical properties supercritical CO₂ presents some advantages for heat extraction
- Even if the study of geochemical processes and reactive transport in diphasic systems (CO₂ + water) is still in its infancy, results from CO₂ storage studies suggest favorable properties compared to water
- Reactions of CO₂ with reservoir minerals, in an open system, may lead to continuous reservoir growth, with increases in heat exchange area, porosity, and permeability
- > Use of CO₂ as heat transmission fluid for EGS looks promising and deserves more studies.

Conclusions & Remarks (2/2)

> It is necessary to develop R&D projects because:

- Many thermophysical and physical-chemical properties suggest advantages from using CO₂ as heat transmission fluid,
- Current conditions are favorable for exploring EGSCO₂, due to a multitude of CO₂ storage research and industrial projects (demonstration pilots, industrial sites, fundamental and engineering research to conceptualize well bore aspects of CO₂ injection, such as casing, completion, cement, etc.),
- CO₂ would be circulated after the (hydraulic) EGS stimulation phase to transform the system from an initial water-based to a CO₂ reservoir (in the core).
 - Prior to dry-out, CO₂ enriched water which at geothermal temperatures would be highly reactive, and may prevent adequate reservoir growth if carbonates are formed with higher molar volume than the primary minerals.
 - This kind of problem could be avoided by injecting a non-reactive gas during the initial reservoir development phase, such as nitrogen, and gradually changing injected gas composition towards CO₂ after sufficient dry-out has been achieved.

Acknowledgements

This work was supported by the U.S. DOE & the Research Directorate of BRGM (France)

Volterra, 1 – 4 April 2007

