Using Decision support models for EGS performance optimisation

Jan-Diederik van Wees, Damien Bonte Albert Genter

WP9 Leiden Workshop, november 2007: D. Bruhn, E. Huenges, C. Karytsas, T. Kohl, P. Ledru, E. Simmelink and other participants

Leiden Workshop: three aspects to performance

- Make the project fly economically → techno-economic assessment → EXCEL
- Constraints for the project by government (e.g. induced earthquakes within limits → HAZOP, contingency plans)
- Legislation and PR bottlenecks (delaying t_{first electricity})

Leiden workshop, november 2007

AIM of future research → bring UTC below 15cts/kWh

Contents

- Performance calculation -EXCEL
- Taking into account uncertainties and engineering options
 - Best practices Asset development decisions E&P
 - Decision support system
- Applications to EGS

Techno-ecomonic calculation→ **Fast computational models**

basin properties

Underground development

Surface development

Economics

driving philosophy is to trade-off accuracy for completeness

FAST ANALYTICAL MODEL for EGS, EXCEL

Brief explanation of rationale behind these

models

Streamline approach for fracture flow (Pruess and Bodvarsson, 1983; Heidinger et al., 2006)

Area of fractures (A) and flow rate (Q) and Number of fractures (N) primarily relate to the sustainibility in time of the high temperatures.

$$T_{out_res} = T_G - (T_G - T_{in_res})erfc \left[\frac{\sqrt{c_G \lambda_G \rho_G}}{c_F} \left(\frac{Narea_{Seg}}{(Q_{seg})} \right) - \frac{\sqrt{t - tdel}}{\sqrt{t - tdel}} \right]$$

Brief explanation of rationale behind these

models

Circulation test:

• II: L/s MPa at res

• PI: I/s MPa at res

Target flowrate→

- injection+production pumps
- friction and thermal expansion

Model based on fracture flow (Pruess and Bodvarsson, 1980; Heidinger et al., who is the

FAST ANALYTICAL MODEL for EGS, EXCEL

ENGINE IIIai meeung

Taking into account uncertainties and engineering options

TNOs experience from Oil and Gas E&P "Decision and risk management" Research consortia (1997-2003)

DSS model: Mixing discrete and continuous uncertainties, decision trees

- Design decision (discrete)
 - Normal plant (costs 1.5 mln/ MWe, eff=0.68)
 - Higheff plant (costs 2 mln/ MWe, eff=0.8)
- Uncertainties (continuous)
 - Fracture area 2-4 km²
 - Inflow other than "connected" fracture 50-90%
- Uncertainties (discrete)
 - Having 1 (80%) ,2 or 3 fractures (each 10%)

Introducing an information acquisition phase, which allows to rule out N1

Costs are 250 kEURO

NPV

ENGINE final meeting

AIM of future research → bring UTC below 15cts/kWh

Conclusions EGS

- Fast models are available in EXCEL
- Excel spread-sheet (and DSS) to be distributed as Engine WP9 deliverable. Excel can be easily modified (no black box). DSS fully probabilistic, scenario trees etc.
- Models allow to rationalize added value of new research for exploration and production

