

POLICY MAKER'S AWARNESS AND PUBLIC ACCEPTANCE OF GEOTHERMAL PROJECTS IN THE PARIS BASIN

Pierre UNGEMACH

GPC IP

Paris Nord 2, 14, rue de la Perdrix, Lot 109, B.P. 50030 95946 ROISSY CDG CEDEX, FRANCE

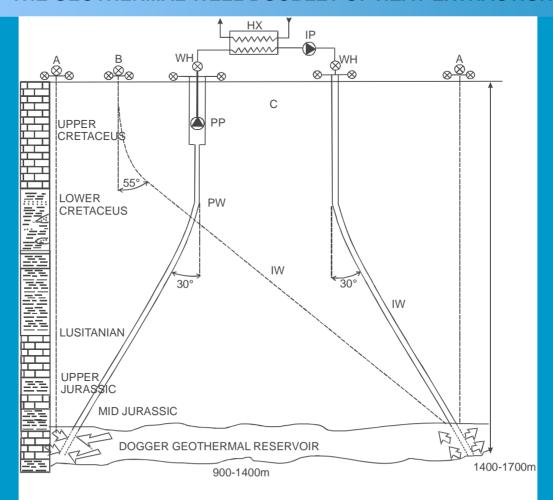
e-mail: pierre.ungemach@geoproduction.f

OUTLINE

- **♦** SCOPE
- **→** MILESTONES
- ◆ ACTORS
- ◆ AWARENESS/ACCEPTANCE
- ◆ WHERE ARE WE NOW?
- ♦ WHERE TO GO NEXT

SCOPE

◆ GEOTHERMAL UNDERTAKING/ACHIEVEMENTS


- GEOTHERMAL DISTRICT HEATING (GDH)
 - 54 completed GDH doublets
 - 34 on line @ 2007
 - 200 MWt installed capacity
 - 1,000 GWht/yr heat production
 - 100,000 heated equivalent dwellings (#400,000 end users)
 - ca 500,000 t saved CO2 emissions
 - 19 natural gas (combined cycle) cogeneration doublets
- HEAT PUMPS
 - GDH back-up abandoned
 - Groundwater (GWHP) fast growing
 - Ground source (GSHP) booming

PARIS BASIN GDH

THE GEOTHERMAL WELL DOUBLET OF HEAT EXTRACTION

A - two vertical wells

B - 1 vertical, 1 deviated

C - two deviated wells

PP production pump
IP injection pump
HX heat exchanger
PW production well
IW injection well
WH wellhead

STATUS PARIS BASIN. LOCATION OF GDH DOUBLETS

Source: GPC, 2003

HEATING AND COOLING HEAT PUMPS

SHALLOW GEOTHERMAL ENERGY FOR HEAT AND COLD

The various shallow geothermal methods

horizontal loops

1.2 - 2.0 m depth

Sorehole heat exchangers (vertical loops)

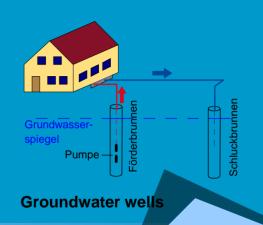
10 - 250 m depth

about 80 % of all systems

energy piles

8 - 45 m depth

ground water wells


4 - 50 m depth

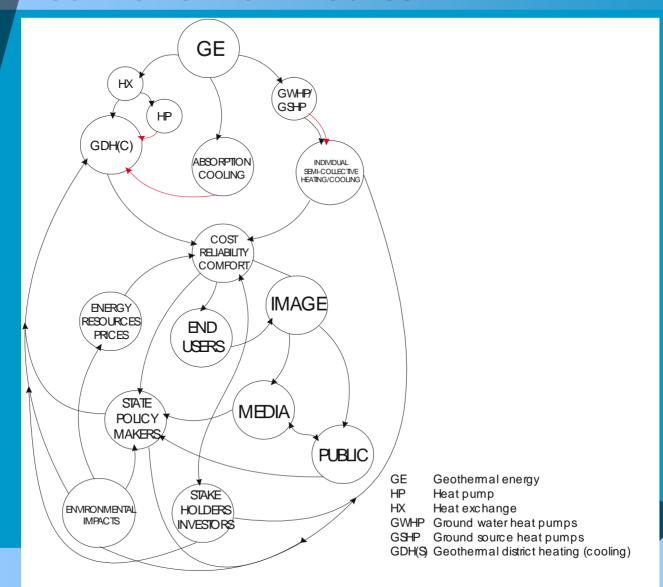
water from mines and tunnels

MILESTONES

YEAR(S)	EVENT(S)/PHASE	STATE INVOLVEMENT	PUBLIC RESPONSE
Late 1960s	1st GDH doublet	Low	Curiosity
1973-1978	1st Oil shock Regulatory framework GDH commissioning	High	Positive
1979-1986	2nd Oil shock GHD full scale development first damaging symptoms	Very high	Wait and see
Late 1980s	Early exploitation Learning curve	Wait and see	Sceptic & hostile
1990s	GDH restructuring Maturation	Very high	Neutral
2000s	Kyoto Protocol/sustainability issues Gas cogeneration Routine GHD exploitation	Steady	Sympathetic/positive
2010	Redeployment Sustainable resource management Absorption/cooling/GWHP/GSHP	Sustained?	Enthusiastic?

GDH COSTS (M € @ 2007)

WELLS	8-10
Geothermal loop/heat plant	1
Heating grid/substations	9-12
Miscellaneous	1
TOTAL	19-24
OM costs	0.4-06



GWHP/GSHP COSTS (H&C) ($10^3 \le @ 2007$)

GWHP	
150 kWt	150-200
OM	20-25
GSHP	
10 kWt	20-25
OM	<2.5

GDH AN INTERACTIVE & MITIGATING MINING/ TECHNOLOGICAL/ECONOMICAL/ENVIRONMENTAL/ COMMUNICATION PROCESS

OPERATORS/END USERS

- ◆ OPERATORS (HOLDERS OF MINING RIGHTS)
 - Public townships, social dwelling agencies
 - Private district heating (DH) service companies (either owners of mining rights and installations or delegate of public service GDH duties and rights)
- **♦ END USERS**
 - **Private** building owners, dwelling co-owners and tenants
 - **Public** State-owned building and facility occupants (administrative, educational, cultural, sportive, fiscal ...)

GDH STAKEHOLDERS

◆ ENERGY UTILITIES

- Power supplier/buyer (feed-in tariffs natural gas cogenerated GDH plants) – EDF
- Natural gas supplier. GDH back-up/relief loads, NG cogenerated GDH plants. GDF

◆ CENTRAL/DISTRICT HEATING SERVICE COMPANIES

- operate and maintain the heat distribution grid and, eventually, the GDH heat plant
- may be awarded a farming/concession/public service delegation contract

♦ EQUIPMENT SUPPLIERS

- piping (casing and grid)
- pumping (downhole, surface)
- hydraulics (valves, wellheads)
- electronics/regulation (frequency converters, automation)

◆ FLUID MONITORING/PROCESSING

- fluid handling/thermochemical inhibition
- solution gas abatement
- monitoring/maintenance/rehabilitation of production/injection facilities

GDH IMAGE

- GDH difficult to apprehend & comprehend
- ◆ GDH remains esoteric and somewhat exotic compared to other RE and fossil fuel sources
- A heavy past record. GDH was regarded, in the early days, as a poorly reliable, expensive and, occasionally, hazardous technology
- More efforts required to attract a wider social acceptance and public/policy makers' awareness.

WHERE ARE WE NOW? (1)

♦ GDH

- Paid a severe tribute to a somewhat chaotic past record;
- Restored an upgraded image, thanks to evidence of mature, technological, entrepreneurial and managerial skills;
- Gained credibility, from both the Public and State, despite a wait and see, more or less opportunistic, attitude of the media;
- Benefited, at large, from a recently favourable energy (persistently high fossil fuel prices) and environmental (clean air concerns, GHG emissions, global warming and climatic changes) context;

WHERE ARE WE NOW? (2)

- GDH still suffers from structurally limiting factors
 - GDH is **heat** (and, at the best, cold) addicted;
 - GDH addresses settings combining both a dependable hot water source and a surface, economically viable, heat load;
 - GDH is, therefore, highly site specific and subject to **local** political issues;
 - GDH, due to its local character escapes the casual lobbying rationale;
 - GDH cannot advocate any specific technological attribute (comparable to wind energy turbines, PV cells, solar thermal collectors, biomass reactors...)

WHERE ARE WE NOW? (3)

- ◆ HEAT PUMP (GWHP/GSHP) ISSUES
 - high public awareness
 - thorough state responsiveness
 - boosting customer demand
 - mitigated entrepreneurial response
 - great future expectations

WHERE TO GO NEXT?

◆ GDH WHAT IS NEEDED MOST

- Operators side. More integration, less dissemination, by grouping several GDH grids into single management structures with a well defined mining/heating synergy
- *State side.* A clearly stated (and applied) environmental policy by favouring RES via relevant regulation, fiscal incentives and ecologic taxation.
- *Overall*. Gain wider social acceptance via selectively targeted actions and relevant communication.

GWHP AND GSHP

- less or not subject to site specificity
- the greatest future
- let it go and fly

