

THE DEEP HEAT MINING PROJECT

Status February 2006

by

Robert J. Hopkirk¹ & Markus O. Häring² DEEP HEAT MINING Association (CH-8162 Steinmaur)

- 1 Polydynamics Engineering, CH-8708 Männedorf
- 2 Häring Geo-Project. CH-8162 Steinmaur

DHM PILOT PROJECT

The DHM Association was set up at the request of the Federal Office of Energy (FOE) and started work in 1996, a Swiss R & D group having been active already then for 20 years. It defined and undertook the following tasks:

- It would discover how feasible EGS now really was and if it might probably become useful in Switzerland.
- If yes, it would find several possible EGS sites and choose one for a pilot plant,
- It would initiate, obtain finance for and plan this first pilot plant, ensuring that EGS technology has the best possible chance to prove itself.
- If the technology proves itself, DHMA would continue to promote it and to encourage the necessary R & D and the motivation of young specialists.

The FOE would provide "seeding money" for these tasks. Power plant construction and operation <u>must be financed from private sources</u>.

SITE SELECTION

Criteria for site selection for the PILOT PLANT:

- Do the local utilities and population need its energy production and do they welcome the plant in their midst?
- Are the geological and geothermal conditions as favourable as they can be to maximize the chance of success?
- Is land available?
- Is water available?
- Will the project be environmentally acceptable in construction and in operation?

SITE SELECTION - superposed maps of site-critical parameters: geology, crustal thickness and regions of large scale heat demand

M.O. Häring, R.J. Hopkirk 2006

4.

Data from: "Geothermal map of Switzerland", Medici & Rybach 1995

SIGNIFICANT DECISIONS

IN ORDER TO HELP MAKE EGS MORE ATTRACTIVE EVEN AT THE PILOT STAGE :

- 1. To aim for co-generation of electrical energy and heat to ensure greater income
- 2. To use a hybrid surface plant if possible, combining geothermal and other sources

These two decisions point to Basle as first and Geneva as second choice

- Both have expanding District Heating networks currently:
 - Basle: covering a maximum demand already over 300MW
 - Geneva: covering a maximum demand of ca. 45MW
- Both offer additional energy sources (eg. incineration plants)
- Aims for GEOTHERMAL generation alone in the first pilot plant:
 - 3MW(e) & 20 MW(th)

Two sites in the Rhine graben

EU Project Soultz-sous-forêts

DEEP HEAT MINING Project, Basel

Some similarities are likely between these two sites

SITE SITUATION

E-W section across the southern Rhine Graben

M.O. Häring, R.J. Hopkirk 2006

TTA POLYDYNAMICS ENGINEERING

8.

geothermal power plant using EGS technology for co-generation of electricity and heat

- electricity und heat for 5'000 households:
 - 20 MW thermal power
 - 3 MW electrical power
- annual reduction of CO2 emissions:
 - 40'000 t

DHM Basel - how it fits in

Minimum target output:

- geothermal power plant using EGS technology for co-generation of electricity and heat for 5'000 households:
 - 20 MW thermal power
 - 3 MW electrical power
- annual reduction of CO2 emissions 40 kt/a

Desired rock heat exchanger:

- Initial rock temperature 200 230°C
- Probable depth 5-6 km
- Three-well unit system well spacing at bottom-hole 700 - 1000 m

Project plan

Geothermal & monitoring well sites

Vertical Seismic Profile (VSP) in OT2 Dec. 2004

15.

First indications of Basement stress field orientation

The main site at Kleinhüningen

Summer 2004 - Before site preparation

January 2006 - concreting rig foundation

DHM Basel - some more numbers

Exploration phase:

2 geothermal wells 5'000 - 6'000 m 3 new monitoring wells 250 - 600 m 3 monitoring stations in existing holes 600 - 2'750 m

Main (geothermal) wells: April 2006 - November 2007

All monitoring wells but one are complete Instrumentation is being tested & installed

Budget limit for exploration phase: ca. 60 Mio CHF = Risk capital

Budget estimate for entire pilot plant: ca. 100 Mio CHF

M.O. Häring, R.J. Hopkirk 2006

Deep Heat Mining

HÄRING

Vision for the future: Swiss EGS power plants

Up to several tens of plants by 2050

- varying sizes, varying depths according to site characteristics and local energy demands
- Heat exchanger depth ranges 4 7 km
- Source temperatures 150 250 °C
- Number of wells per site 3 20
- Power outputs from geothermal energy alone
 - if for el. generation only 5 40 Mwe (i.e.: without hybrid cycles)
 - if for heat production only 30 200 MWth
- Specific Investment
 2 3 Mio CHF/MW installed
- Generating costs
 - electrical energy 0.1 0.2 CHF/kWh
 - heat 0.03 0.06 CHF/kWh
- CO2- Reduction (heat prod. only) 10 200 kt/a

Closing remarks - a caution

Use of EGS technology outside geothermal anomalies is itself still a vision

Nothing is certain until EGS is proven to be commercially viable

Several successful pilot plants are needed so that: underground heat exchangers can be created

- at any promising site;
- of the right size to fulfill a local energy demand.

Much depends upon "getting it right first time" in these pilot plants and DHM Basel is one of these - for Switzerland it is all-important.

Only then can EGS become accepted as an Available Energy Source

Thank you for your patience and attention!

For the current status of DHM Basel see www.geothermal.ch For other aspects see www.dhm.ch

M.O. Häring, R.J. Hopkirk 2006

TA POLYDYNAMICS ENGINEERING