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Rationales for choosing Discrete Fracture Networks models
Our experience comes from : (1/2)

Nuclear waste management studies in hard rocks

— EC programs (FI4W-CT96-0033, EUC19134 EN)

— Benchmark DECOVALEX (NIREX data base, SKI Report 98:39)

— ANDRA (HAVL granite, report GRPF DBG 05.0001.B)
Water resources in semi arid granite areas

— CEFIPRA projects in alterated basements, NGRI institute, India.
Liquid-gas storage /water curtain systems, (GEOSTOCK/Tafjord reservoir, ...)

Early HDR modelling experiences in shallow systems
— french project (Mayet de Montagne)
— UK project (Rosemanowes quarry)

Soultz project, intermediate 3 km deep reservoir
— EC programs (JOR3-CT95-0054, CT98-0313, STREP FP6-EGS)
— Partnership EDRF, BRGM, ADEME



Rationales for choosing Discrete Fracture Networks models
Lessons learned (2/2)

Fractures exist at any scale
— Very dense populations can be observed along wells
— They reflect tectonic history (a classification 1s possible)

Few fracture control flow along bore holes
— Transport is highly heterogeneous

Rock matrix 1s of very little importance for flow

Interactions with stress regime are high
(module+orientation)
— Impact on global flow properties can be low
— High pressures can be accommodated
— Shear mechanism is not well understood
— Released seismic energy can be large

Role of rock damaged/alterated zones not properly
accounted for



Main assumptions to simulate fracture networks 1n
rock blocks(1/2)

» Fractures are planar, disc
shaped, and assemble in 3D
networks

— Density (from scan lines)
— Size distribution

* lognormal

* Power law (R, a)
— No matrix

* Flow 1s not evenly 2D
distributed in plane but
concentrated in 1D channels

— Fracture aperture
e Cubiclaw: T ~¢€?

e Porous material: T ~e¢




Main Assumptions
Possible couplings on each fracture (2/2)

Normal compliance versus normal effective stress
— Normal closure law

Shear rupture + normal dilation versus shear stress

— Mohr-Coulomb criterion — pre/post rupture friction,
cohesion

Thermal exchange — conduction across adjacent
rock blocks

— Fluid density

— Fluid viscosity

— Induced thermo-elastic stress components
Possibly two non-miscible fluids

— Natural heavy brine — fresh water
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Example of the DFN application in very tight systems
(Rad Waste Management)
Many local flow experiment are available — Upscaling ?

Straddle packer investigations
in two wells (Charoux Civray

site, ANDRA)

X - Coupe Est-Ouest(km)

451.6 451.7 451.8 451.9 452.0 452.1

CHA212

10C

20C

30(

40(

500

60C

70C

80(

90C

T [mfs)

PIP, [-]

Slug test analysis. A bimodal
size-transmissivity

Upscaling: Flow log
simulation at intermediate

distribution seems scale
appropriate)
Reseau 1
Tre1o=210"" < T (R) <Tg_gg= 2.10™ m%s 3
1e-06 F ! i i E le-05 | : ]
w.i 1e-06 | i | 1 o
le-07 | = o Vot | i I | 1 0.03
i é‘ le-07 | | || 'i| |! .ll 3
le-08 F e | I I I P 1 P N O P [ Y I LT 0003
500 525 550 575 600
le-0o. | distance [m]
le-10 ¢ Reseau 2
le-11 | - : T 7 3
0 2 prs 75 100 H:E le-05 ¢ 103
taille [m] o le-06 | I i | i 0.03
él 1(:-07 11 !J! ||: 1 | I !J| :
bEir i Ll i 0,003

|
500 525 550 575 600

T 9 2 4
210" < TR R) < 2,107 mYs, $=2.5 10 .
distance [m]

NNy Conclusion: 80% of the joints are
al: NN\ NN partly sealed. Probable correlation
04t \ NN\ between infillings and orientation.
02} meswes - NN Non direct correlation between fract
0 — T — -ure size and hydraulic aperture.

temps [h]

flux [I/mn]

flux [1/mn]



EGS studies (Soultz sous Foréts site)
Local hydraulic tests are sparse (hot/expensive/risky) but
Some large scale indirect characterization is available

Magnitudo—frequancy distribution batare and afor shut in (2005 GPK4 stimutation, 070205 1o 22/02105)
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3D DFN geometry and initial transmissivity can be constrained by the observed micro-
seismic migration . Magnitude frequency diagrams gives information on the size distribution
of the fractures. Identified large structures can be superimposed
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Discussion of network properties against seismic

data (after Bruel, in Int. J. Rock Mech. & Abstr. In press 2007)
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Discussion on hydraulic efficiency of hydraulic

stimulations against GPK4 measurements (2004,2005)

GPK4 was stimulated in 2004 and again in 2005 (~30000
m?3 each). No structure was developed at large scale. The

(1/2)

model is used to understand the increase of hydraulic

capacity of the fracture network around the well. The role
of a nearby structure delineated as a ‘no seismic zone ’can
be discussed. This zone would separate the reservoir into

two adjacent compartments.
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Discussion on hydraulic efficiency of hydraulic

stimulations against GPK4 measurements (2004,2005)
(2/2)

GPK4: calcul de la surpression (cote reservoir)
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Importance of alterations within the fractures. Role of fracture
porosity in mass transfer: a two phase flow approach (1/3)

* Pressure /saturation formulation , for each fluid, assumed non miscible
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Using the two phase flow module to discuss fracture volume.

Application to the circulation test (Aug. Oct. 2005) (2/3)
After Baujard et al. Geothermics, In press, 2007
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Using the two phase flow module to discuss fracture volume.

Saturation Surpression fond de puits[MPa]

Débit [I/s]

Application to the circulation test (Aug. Oct. 2005) (3/3)
After Baujard et al. Geothermics, In press, 2007
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Discussion and Conclusion

Discrete Fracture Network 1s a valuable approach because :
— It captures heterogeneity of structure and hydraulic responses
* Open thin fractures and planar porous zones can be mixed as ‘objects’

— It allows some non-reversible interactions between hydraulic and
mechanical parameters

— It provides a basis for a first interpretation of seismic activity
* Delayed activity is obtained as a result of low diffusivity
» Fracture size and large events could be linked
— It 1s appropriate for mass transfer predictions and long term thermal
calculations
Progress are still required, among them
— The understanding of coupled processes during shear motion

— The response of rock damaged/alterated zones, in conjunction with
thermal exchange and acidization experiments
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