

BRGM/Geo-Energy unit

Objectives of our modeling work

- > Understand which physical mechanisms are involved in the hydraulic stimulation of the well in crystalline rocks
- Extract the main parameters playing a role in the hydraulic stimulation

Focus hereafter on the influence of the stress field on the HM behavior of GPK4 during the stimulation test

3DEC code

- > Based on the Distinct Element Method
 - allows finite displacements and rotations of discrete bodies, including complete detachment,
 - recognizes new contacts automatically,
 - > perfect for modelling discontinuous media, such as fractured rock masses
- Fractured rock mass considered as a blocks assembly, cut by joints/discontinuities
 - blocks are rigid or deformable,
 - joints behaviour is governed by springs that takes into account the opening/closing of the fractures as well as their shearing.
- Flow takes place only in the fractures (blocks are impermeable). Flow is laminar and obeys the cubic law

Hydraulic stimulation

> Stimulation test

- Apply an overpressure in the well. Value taken from the real stimulation test conducted in the GPK4 well.
- FISH HM coupling procedure
- Calculate the injected flowrate at the well, in each fracture
- Stop the run when equilibrium between in and out flowrates is reached

Stress field

> Klee and Rummel, 1993

- $\sigma_{\rm h}$ = 15.8[MPa] + 0.0149[MPa/m] (depth[m]-1458)
- $\sigma_{\rm H} = 23.7[MPa] + 0.0336[MPa/m] (depth[m]-1458)$
- $\sigma_v = 33.8[MPa] + 0.0255[MPa/m] (depth[m]-1377)$

 $\sigma_{\rm H}$ oriented N170°E ± 15°

> Cornet et al. (2006, to be published)

$$\sigma_{\rm h}$$
 = (0.54 +/- 0.02)* sv

 $\sigma_{\rm H}$ = (0.95 +/- 0.05)* sv

 $\sigma_v = 1377^*0.024[MPa] + 0.0255[MPa/m] (depth[m]-1377)$

 $\sigma_{\rm H}$ oriented N175°E +/- 6°

GPK4 –	best fit	of ΔP -0	Q stimu	lation o	curve
	Fracture N°	Initial aperture a _o [mm]	Resid. aperture a _{res} [mm]	Max. aperture a _{max} [mm]	Friction angle φ (°)
Previous runs	F1 to F9	5.0	2.5	150	45
Best fit	F1	0.5	0.25	15	45
	F2	5.0	2.50	150	45
	F3	5.0	2.50	150	40
	F4	2.5	1.25	75	40
	F5	5.0	2.50	150	45
	F6	5.0	2.50	150	40
	F7	5.0	2.50	150	40
	F8	5.0	2.50	150	40
	F9	0.5	0.25	15	45
ENGINE Meeting, "Stimulation of reservoir and induced microseismicity"					brgm

GPK4 – best fit – influence in terms of flow

Conclusions

>Great importance of the stress field, depending on the HM fractures properties

>Looking only at the \triangle P-Q stimulation curve obtained with 3DEC is not satisfactory

>Max shear displacements are not located close to the well

>Blocks instability with the strike slip regime is unrealistic

- Either the stress field taken into account does not reflect the real in-situ one,
- And/or, the HM fractures properties are not appropriate.

Work in progress

>New Fractures constitutive law taking into account damage during shearing

>New conceptual hydraulic model, taking into account the 3 wells

>Thermal coupling

