

Centre for Geothermal Research

Centre of Hydrogeology University of Neuchâtel

Acid treatments on geothermal wells: first experiments and modelling at the Soultz EGS fractured reservoir.

Sandrine PORTIER,

Laurent ANDRE,

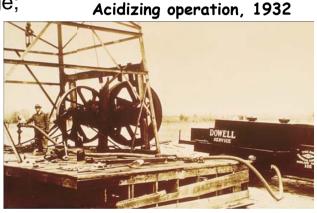
and François-D. VUATAZ

Acid treatments

Long and successful experience acquired from the oil industry

- ✓ Large number of methods and experiences set up for oil and gas wells.
- ✓ Procedures partially adapted to the needs for geothermal reservoirs.

Aims


- ✓ enhancing well productivity;
- ✓ reducing skin factor by removing near-wellbore damage;
- $\checkmark\,$ dissolving the scales in fractures.

Reactants used

- ✓ Conventional acid systems
 - HCI acid and HCI-HF mud acid
 - Mixture containing organic acid and HF
- ✓ Chelatants (EDTA family)
- ✓ Retarded acid systems
 - Addition of retardants to prolong the effect of the reactive agent further in the fractures

Types of acidizing processes

- ✓ Matrix acidizing
- ✓ Fracture acidizing

Types of acidizing processes	Matrix acidizing	Fracture acidizing	
Process	performed below fracturing flow rate and pressure	performed above fracturing flow rate and pressure	
Aims	enhancing well productivity; reducing skin factor by removing near-wellbore damage	cracking of the rock; farthest penetration of acid along the fracture	
Procedure	3 steps : injecting 15% HCI, then an HCI-HF mixture, followed by a sufficient afterflush of water to clear all acid from well tubulars	acid is injected in natural/created fractures by fluid-loss control (use of packers, viscosity of acid, addition of solid particulates)	
Injected fluid properties	chemical formulation of mud acid depends on the rock composition	injection of a viscous fluid	
Treatment volumes	120 up to 6000 L/m of open hole	12 000 - 25 000 L/m of open hole	
Additives	corrosion inhibitor to protect tubulars during exposure to acid		

Cleaning of geothermal wells (1)

- High temperature geothermal fields
 - ✓ Numerous wells in various geothermal fields have been chemically stimulated, mostly by strong acids (Philippines, El Salvador, USA, Italy, etc...).
 - Mineral deposits on casings and around the wells are treated successfully several times per year at Heber geothermal field (California, USA).
 - Corrosion damage can be mostly avoided by using adequate inhibitors.

ENGINE Workshop3

CREGE

Cleaning of geothermal wells (2)

Results of HCI-HF treatments for scaling removal and connectivity development

Geothermal Fields	Number of treated wells	Injectivity Index (kg/s/bar)	Improvement factor
Beemen (Philippines)	2	0.68 → 3.01	4.4
Bacman (Philippines)		0.99 → 1.4	1.4
	3	3.01 → 5.84	1.9
Leyte (Philippines)		0.68 → 1.77	2.6
		1.52 → 10.8	7.1
Salak (Indonesia)	1	4.7 → 12.1	2.6
	5	11 → 54	5
		4 → 25	7
Larderello (Italy)		1.5 → 18	12
		-	4
		11 → 54	5
	5	1.6 → 7.6	4.8
		1.4 → 8.6	6.1
Berlín (El Salvador)		0.2 → 1.98	9.9
		0.9 → 3.4	3.8
		1.65 → 4.67	2.8
Beowawe (USA)	1	-	2.2
Coso (USA)	30	24 wells	successful

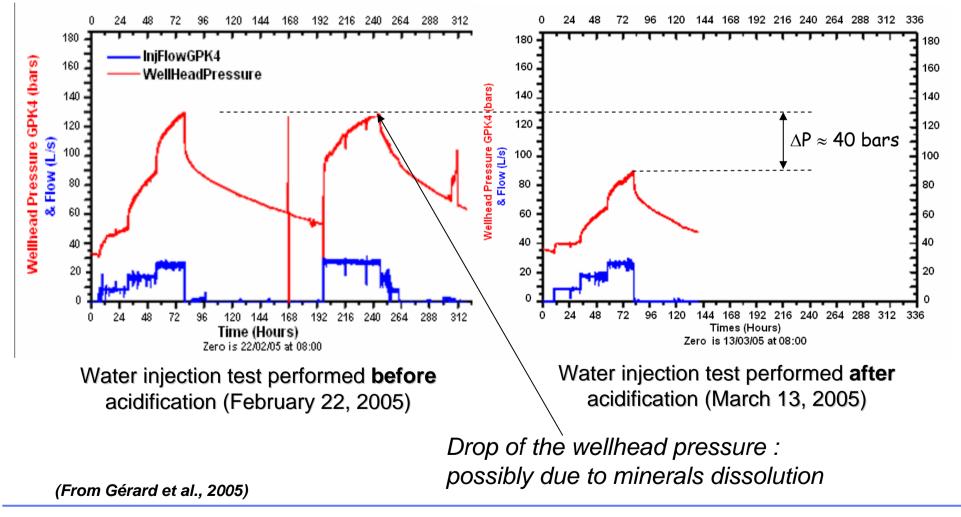
ENGINE Workshop3

June 29-30th, 2006

Cleaning of geothermal wells (3)

- EGS reservoirs
 - ✓ Only two chemical stimulation were performed on past EGS reservoirs : Fenton Hill (USA) and Fjällbacka (S).
 - ✓ The Soultz EGS has probably the best experience on soft HCI / RMA stimulation.

ENGINE Workshop3

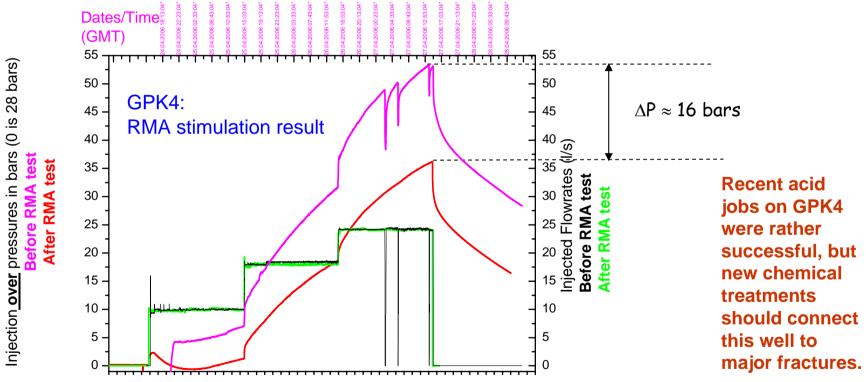

CREGE

June 29-30th, 2006

First acidification test at Soultz: GPK4 well

February 2005: 5200 m³ of HCl acid solution at 2 g/L and a flow of 27 L/s. A total of 11 tons of HCl were injected.

- > 35% reduction of the wellhead pressure due to acidification
- **Decrease of the reservoir impedance by a factor 1.5 (0.2 to 0.3 L/s/bar).**

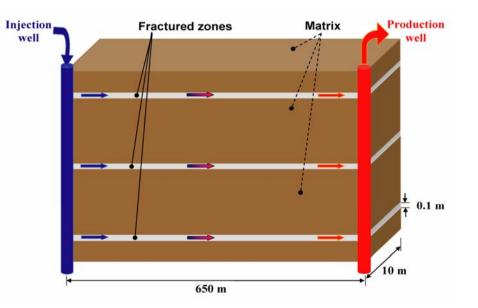


ENGINE Workshop3

RMA acid job at Soultz: GPK4 well

May 2006 : acid treatment performed in four stages.

Main flush : injection of 200 m³ of Regular Mud Acid (RMA), (12 % HCl - 3 % HF acid mixture treatment), with addition of a corrosion inhibitor, at a flow rate of 22 l/s during 2,5 hours. During this test, 98 tons of HCl were injected. Estimation of the increase of GPK4 injectivity due to acidification : from 0.3 to 0.4 L/s/bar.



Impact of the **RMA acidification test** on the wellhead measured by comparison before and after the acidification test on GPK4 well (May 2006). (GEIE, 2006).

ENGINE Workshop3

Simulation of acidification tests (1)

- Use of the thermo-hydraulic-chemical coupled code : FRACHEM
- Geometrical model is intended to represent Soultz site
- Well configuration and data for mineralogical composition were taken from the EGS at Soultz.
- 2-D simplified geometrical model
- 1250 fractured zones
- Matrix
 - $K_{matrix} = 10^{-15} \text{ m}^2/\text{Pa}$
 - Porosity_{matrix} = 0
- Fractured zones
 - K_{frac} = 7.4 10⁻⁸ m²/Pa
 - Porosity_{frac} = 10 %
- Q_{frac} = 0.02 L/s
- $T_{injection} = 65 \text{ °C and } T_{initial} = 200 \text{ °C}$
- Pinjection = 8 MPa and Pproduction = 0 MPa

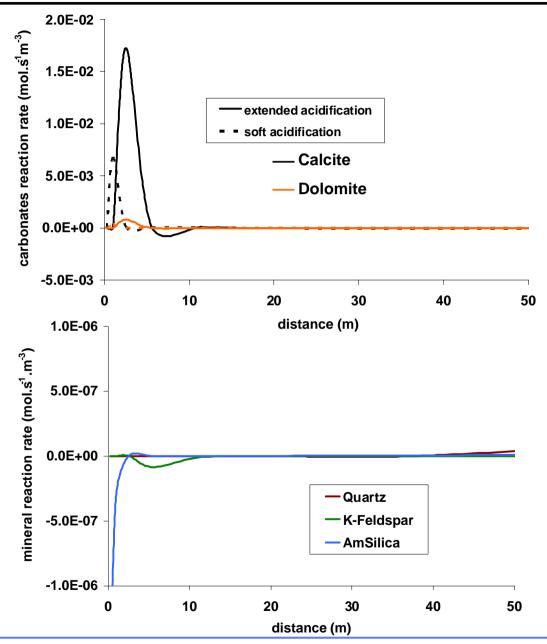
Simulation of acidification tests (2)

Characteristics of formation fluid


- NaCl brine, Temp. = 200°C, pH = 4.9
- TDS ~ 100 g/kg (ionic strength ~ 1.8 m)
- Chemical composition : analysis of GPK2 (1999)

Characteristics of injected fluids

- Injection of HCI acid solutions at two different concentrations
 - Soft acidification: 2 g/L during 60 hours
 - RMA treatment: 15 g/L during 70 hours
- Temp. injection = 65°C
- Total injection flow fixed at 25 L/s


Assumptions on water-rock interactions

- Major circulation occurs in hydrothermally altered granite.
- Acid interacts with carbonates, quartz, K-feldspars, sulfides and clays.

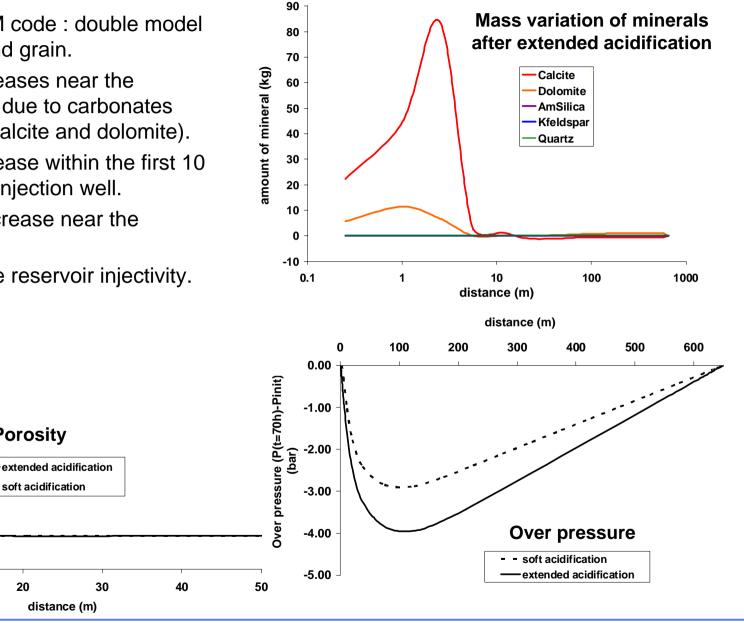
Results : minerals behaviour

- High reactivity of carbonates and massive dissolution of these compounds near the injection well.
- The rapid reaction means the acid does not penetrate very far into the formation before it is spent.
- Soft acidification: 11 tons of HCI
 - ✓ 20 % of the carbonates are dissolved in in the first 3.5 m.
- Extended acidification: 98 tons of HCI
 - ✓ 70 % of the carbonates are dissolved in a radius of 7.5 m.
 - Weak impact on other minerals: low precipitation of K-feldspar and amorphous silica, quartz is not affected by the HCI acidification.

ENGINE Workshop3

CREGE

June 29-30th, 2006


Results: consequences on reservoir porosity

- In FRACHEM code : double model of fracture and grain.
- Porosity increases near the injection well due to carbonates dissolution (calcite and dolomite).
- Porosity increase within the first 10 metres from injection well.
- Pressure decrease near the injection well.
- Impact on the reservoir injectivity.

Porosity

20

soft acidification

ENGINE Workshop3

10

0.16

0.15

0.14

0.13

0.12

0.11

0.1

0.09

0

Porosity

CREGE

Conclusion on modelling the impact of acid jobs


Modelling of acid stimulation experiments is carried out for the Soultz reservoir

- Expected increase of porosity due to the dissolution of calcite and dolomite present in the fractures.
- Mixing an acid solution with the formation brine instead of fresh water prevents a weak precipitation processes of pyrite, quartz and amorphous silica.
- Due to the high reactivity of HCI, all these simulated processes occur in a very limited zone around the injection well.

Improvement of the simulation of the acidification processes

- by increasing the injection times of low concentration solutions or by augmenting the acid concentration of the injected fluids;
- by increasing the injection flow to allow a farther acid transport trough the fractures;
- by increasing the acid injection pressure to simulate fracture acidizing.

Thank you for your attention

