

Outline

- Introduction
- Hydraulic fracturing basics
- Types of applications
- Considerations of design
- Monitoring
- Concluding remarks

Introduction

Stimulation of under-performing wells

- Matrix acidizing
 - Dissolve "skin" with acid (HCI, HF)
 - Not working with all kinds of damage
 - Concern of tubing corrosion
- Hydraulic fracturing
 - Increase inflow area
 - Pump fluid with high pressure break the formation
 - Pump "proppant" in open fracture
 - Keep frac open after shutin
 - High-permeability path from reservoir to well

Hydraulic fracturing – Basic concept σ₁

 Stress: maximum stress vertical; minimum and medium stresses horizontal

Mode I: Opening

Mode II: Sliding

Mode III: Tearing

 Hydraulic fracturing: Tensile (mode I) – Vertical fracture has least resistance

Hydraulic fracturing – Visualization of the process

Processes in hydraulic fracturing

Hydraulic fracturing – Concept

- K_I: Stress intensity measure of singular stress behaviour beyond the tip
- Length increases when $K_l > K_{lc}$
- Volume balance
- Leakoff correlation

$$K_{I} = f(w, A)$$
 $w(y, z) = f(p(y, z) - \sigma_{3})$
 $\overline{w} = \frac{V_{fracture}}{A_{fracture}}$
 $\frac{dV}{dt} = Q_{inj} - Q_{leakoff}$
 $Q_{leakoff} = \int_{fracture} v_{leakoff} dA$
 $v_{leakoff} = (p_{frac} - p_{res}) \cdot d_{penetrated}$
 $d_{penetrated} = \int_{0}^{t} v_{leakoff} dt'$

Hydraulic fracturing – Complicating issues

- Profile of the minimum in-situ stress
- Elasticity profile
- Influence of pore pressure increase and temperature decrease on stress (poro-elasticity and thermo-elasticity)
- 3D pore pressure field complicates leakoff correlation
- Plugging of the fracture interior

Layered Reservoir

- Stress Profile
- Elasticity Profile
- Permeability Profile
- Porosity Profile

Example: Influence of a stress barrier

Width and length contours ($\Delta \sigma = 2 \text{ MPa}$)

Massive hydraulic fracturing

- Large treatments
- Low-permeability reservoir
- Create additional contact area
- Multiple fractures in a horizontal well

Tip-Screen-Out fracturing / Frac & Pack

- Goal: Bypass damage
- Typically in higher-permeability reservoir
- Short fracture
- Tip-Screen-Out to increase fracture width

Water Injection under Fracturing Conditions

Plugging and Channelling in Fracture

Barnett shale

- Very low permeability
- Naturally fractured
- Goal: interconnected fracture network
- Waterfracturing
- Monitoring

Design considerations

- The goal of hydraulic fracturing is economic
- Expected production
 - Analytic expressions (Prats)
 - Semi-analytic calculations
 - Reservoir simulation
- Connection with Geology
 - Flow barriers
 - Permeability
 - Heterogeneity
 - Natural fractures

Dimensionless fracture conductivity

$$C_{fD} = \frac{k_f \cdot w}{k \cdot L}$$

Optimum value:

- High k: maximize width and proppant permeability
- Low k: maximize length
- Proppant placement

Design considerations

More input for design:

- In-situ stresses
- Fracturing pressures
- Leakoff behaviour
- Effects of layering:
 - Containing capacity
 - Connection
- Natural fractures
- Poro-elasticity
- Thermo-elasticity

Minifrac test

Monitoring

Build up a knowledge base:

- Treatment performance
- Productivity monitoring

Treatment performance monitoring

- Rates & Pressure traces (e.g. Tip-Screen-Out)
- Use fracture simulator
- Tiltmeters
 - Surface
 - Offset well
- Microseismic mapping two downhole receivers

Monitoring

Build up a knowledge base:

- Treatment performance
- Productivity monitoring

Productivity monitoring

- Well testing:
 Effective fracture size
- Productivity evaluation e.g. Stimulated Volume Analysis

Concluding remarks

- What is the goal?
 - Contact area
 - Bypass damage
 - Connect to natural fractures
- Design
 - Reservoir permeability
 - Fracture conductivity
 - Geology
 - Rock mechanics
 - Minifrac tests
 - Design software
 - Fluid selection
 - Proppant selection

- Monitoring
 Build up a knowledge base
 - Rates
 - Pressures
 - Temperatures
 - Tiltmeter mapping
 - Microseismics
 - Productivity

