

Session: Reservoir characterisation during stimulation

Content:

- 1. Principal task in EGS development
- 2. A methodology: HEX-S code
- 3. Example: Coso geothermal field, USA
- 4. Example: Europ. EGS project Soultz, France

Mégel Th., Kohl Th. GEOWATT AG, CH-Zürich

ENGINE Workshop3: Stimulation of reservoir and induced microseismicity 29-30th June 2006, CH-Zürich

> Reservoir parameters of production ?

Phase	Borehole scale	Reservoir scale
Before drilling		Regional/local geological model Geophysical survey data
After drilling	Cuttings (z) UBI/ARI logs (z) Temp logs (z,t) Stress field (z)	
After hydraulic tests 1. well	Flow log (z ,t) Pressure (z, t)	
After stimulation 1. well	Pressure (z,t)	Microseismic locations (x , y , z , t) Hydro-mechan.
2. well	$ \begin{array}{c} \text{Identifying } k(x,y,z,t) \\ \text{Predict } k(x,y,z,t) \\ \text{Fredict } k(x,y,z,t) \\ \text{Hexs} \end{array} $	
3. well	Predict k(x,y,z,t) for a stimulation scenario	

Principal concept of HEX-S

1. Hydraulic structure model

2. Hydromech. calc. of k(x,y,z,t)

Example: Stimulation GPK4, development of fracture apertures

lso-Surface = 0.0001 m

Implementation of hydraulic structures

Example: European EGS project Soultz-sous-Forêts, France

Network of hydraulically active fracture zones	 Dip, Azi of dip, depth Shear friction angle (31°) Shear dilation angle (3°) 90% reference closure stress (30e6 Pa) Fracture zone density [2e-3 m⁻¹] Fracture zone radii (500 m) Slip patches radii (40 m)
Rock parameters	 E-modulus (6e10 Pa) Poissons ratio (0.25)
Stress field (linear function with depth)	 shmin (z) SHmax (z) Sv (z) Azi of SHmax (11°)
Initial hydraulics	 P (z) Initial permeability: 5e-16 m² (defines the initial apertures)

Task	Method
1. Identification of the hydraulic activity	 Extracting the depth range of zones of lost circulation
	 Extracting depth range of signals (significant deviations in gradient) in temperature logs
	3. Others ?
2. Identification of the orientation	 Extracting dip + azidip from FMS- logs for the depth range of each identified FZ under task 1
	 Determination of the set of orientations with the highest occurrences

- Fit of downhole pressure history
- Highly non-linear processes
- Permeability variation due to shearing

Flow aligned along seismic structuresSeismicity connected to zones of high pressure

- Production must become sufficiently predictable for conditions at a given site
- Production parameter Q [l/s] depends on reservoir impedance = fkt { k(x,y,z,t) }
- Production parameter T [°C] depends on heat exch.surfaces = fkt { k(x,y,z,t) }
- Task 1: Making production [MW] predictable
 = sufficient characterisation of k(x,y,z,t) of a reservoir
- Task 2: Improve/enhance production [MW]
 = predict k(x,y,z,t) due to enhancement activities
- Methods/models/codes as HEX-S are needed to fulfil these tasks.