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1 Introduction
Inverse methods are a powerful tool when calibrating given com-
putational models on observed data [3]. Most of the methods ap-
plied will produce estimates of error associated with the parame-
ters determined as a by-product of the inversion technique. Un-
fortunately, forward simulators are much more developed than the
corresponding inverse codes. We used Automatic Differentiation
(AD) to derive the Jacobian codes from a given 3-D steady-state
numerical solver for coupled flow and heat transport and its im-
plementation within a Bayesian inverse model [8]. Currently, we
are working on the implementation of time-dependent models, as
well as the introduction of other physicochemical processes into
the the inverse toolbox. Basic equations are given below.
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The red parts of the equations will be available in the near future.
Currently, the following features are operational:

• quite general functions for fluid and rock properties, incorpo-
rated alt link time,

• nonlinear flow laws - useful for fracture flow,

• phase change (freezing/thawing),

• nonlinear solver based on fixed-point iteration or matrix-free
Newton-Krylov,

• properties and boundary conditions realized by arbitrary zones,

• output in HDF5, VTK, Tecplot format.
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Figure 1: Model geometry for synthetic model. It is constructed from 11 units of different
thermal and hydraulic properties. Units 1–8 represent sedimentary layers, while the salt diapir
is associated with unit 9. The crosscutting faults which in this model are highly permeable, are
units 10 and 11. Also shown is the assumed surface head driving the flow.

2 Inverse algorithm
A Bayesian inverse approach [13] is based on a model minimizing
the nonlinear functional

ΘB = [d− g(p)]TC−1
d [d− g(p)] + (p− pa)TC−1

p (p− pa). (4)

Here, g(p) refers to the forward model d is the observed data vec-
tor and p is the parameter vector. A priori values for parameters pa

and inverse covariance matrices C−1
d and C−1

p have to be known
beforehand. A minimum can be found by a Gauss-Newton (GN)
iteration
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or alternative formulations, where J = ∂g/∂p refers to the Jaco-
bian.

Our implementation includes:

• data: subsets of the nodal fields h and T calculated by the
FD forward model, or linear combinations, i. e., point measure-
ments, gradients or integrals of both data types,

• parameter: subsets or all of φ, ax,ay kz, bx,by,λz, and A for each
zone, boundary zone properties,

• optional logarithmic parameter transformation,

• data and parameter space formulations of GN [13], and direct
minimization of (4) by Nonlinear Conjugate Gradients (NLCG),
or limited-memory Quasi-Newton techniques (e. g., LBFGS) [7],

• full or diagonal a priori covariances,

• optional calculation of covariances matrix a posteriori,

C
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and resolution matrices,
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3 Example: Bayesian inversion
To give an example, we calculated synthetic coupled 2-D mod-
els, schematically presenting the surroundings of salt diapir with
cross-cutting tectonic faults. Model geometry (220 × 119) and the
association of units is shown in Fig. 1. Unit 9 is associated with the
nearly impermeable salt diapir, while units 10 and 11 represent the
permeable fault zones. The model presented here is driven pre-
dominantly by density differences induced by a gradient of head
imposed as a “topographic” boundary condition at the top (“forced
convection”), though a contribution of varying temperature (“free
convection”) is also present. Considerable flow occurs orthogonal
to the temperature isolines, i. e., v · ∇T 6= 0 in large parts of the
model.
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Figure 2: Inversion results for temperature data (blue upward triangles, shifted to the left),
head data (red downward triangles, shifted to the right), and the combined data set (green cir-
cles, center). Error bars were calculated from Equation (6). (a) and (c) have been show the
topographically driven case, while (b) and (d) come from the free convection example. Note that
the parameters were taken as natural logarithms, implying that the assumed permeability errors
of 6 correspond to a factor of more than two decades, while conductivities are usually believed
to be more accurately known (≈ 20%). The priors were chosen with an non-trivial setup in mind

The setup described in Fig. 1. For each case, a set of 8 models
was created. In each of these models, a given number of bore-
holes was generated, where site and depth were chosen at ran-
dom. In particular, depth varied normally with a mean of 3500 m
and a standard deviation of 1000 m. The data were subsequently
modified, adding zero-mean normal noise with a standard devia-
tion of 0.5 K for temperature, and 0.5 m for head, respectively. This
choice of errors is disputable: though temperature can be contin-
uously measured at high accuracy, technical and geological noise
may easily reach this value. By geological noise we refer to small-
scale parameter variations not accounted for in the model. The
quasi-continuous head observations are somewhat idealized, be-
cause formation pressure is difficult to obtain in deep boreholes as
assumed here. Often only integral values for special intervals or
other derived quantities (e. g., Darcy velocities) are known. These
conditions could be considerably different in a shallower regime,
where temperature differences may be much smaller, and heads
are much easier to determine with high accuracy.

The numerical experiment demonstrates the role of different data
types. Temperature, head, and joined data sets were generated
as described above. As expected, the determination of thermal
conductivities requires temperature measurements. However, in
cases with significant flow, the use of hydraulic data will reduce
uncertainties, as advective effects may inhibit the estimation of
conductive properties.
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Figure 3: Design quality estimators t0 for units 11 and 7 at the surface of the model shown
in Fig. 1. Borehole depths of 500, 1500, and 2500 m are assumed.

4 Example: experimental design
Optimizing necessary or additional measurements, and judging
their relevance for model generation is an important application
of inverse theory. Starting from the Fisher Information Matrix
F = JTC−1

p J, several common design quality indicators may be
derived [1, 2], e. g.,

t0 = −
N∑
i=1

1

λi + δ
t3 =

N∑
i=1

λi = trace(F). (8)

5 Example: self-potential
Hydraulic data (formation pressures) are not easily accessible with
in deep reservoirs. Therefore we suggest the use of self-potential
(SP) observations to act as additional constraints of the model,
as they can be obtained relatively cheaply at the surface, in non-
cased boreholes, and even at the ocean bottom.

SP anomalies are caused by fluid flow through heterogeneous
reservoirs. The sources of electrical potential are related to the
hydraulic potential by the coupling coefficient

L =
εε0ζ

µ(σ + 2σs/r)
ρg. (9)

This means that SP is sensitive to spatial changes in the physical
parameters in L, as well as to permeability. Most parameters in L
are dependent on temperature, salinity, and other physicochemi-
cal (e. g., redox-potential). These relations are not well-known and
represent an area of extensive research [11, 12, 9, 10, 4, 5, 6].
The proposed variations of L, however, are much smaller than
the variations in permeability. Thus we believe, that even with
these uncertainties, the inclusion of SP observation into the in-
verse scheme could lead to improved models. The fact that elec-
trokinetic potentials are also coupled to temperature makes them
particularly interesting when exploring geothermal reservoirs.

In Fig. 4show two models (calculated with COMSOL) as reference
model and data source for our on SP inversion. They represent a
very simple steady-state pumping scenario, in particular the role
of the highly-conducting steel casing.
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Figure 4: Design quality estimators t0 for units 11 and 7 at the surface of the model shown
in Fig. 1. Borehole depths of 500, 1500, and 2500 m are assumed.

References
[1] A. Curtis. Theory of model-based geophysical survey and experimental design. part 1 – linear problems. The

Leading Edge, 23:997–1004, 2004.

[2] A. Curtis. Theory of model-based geophysical survey and experimental design. part 2 – nonlinear problems.
The Leading Edge, 23:1112–1117, 2004.

[3] M. C. Hill and C. R. Tiedeman. Effective Model Calibration: With Analysis of Data, Sensitivities, Predictions,
and Uncertainty. Wiley, New York, 2006.
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[5] A. Maineult, Y. Bernabé, and P. Ackerer. Detection of advected concentration and pH fronts from self-potential
measurements. Journal of Geophysical Research, 110:B11205, 2005.
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