Well stimulation in the hydrocarbon industry – Lessons for geothermal applications

Peter Fokker

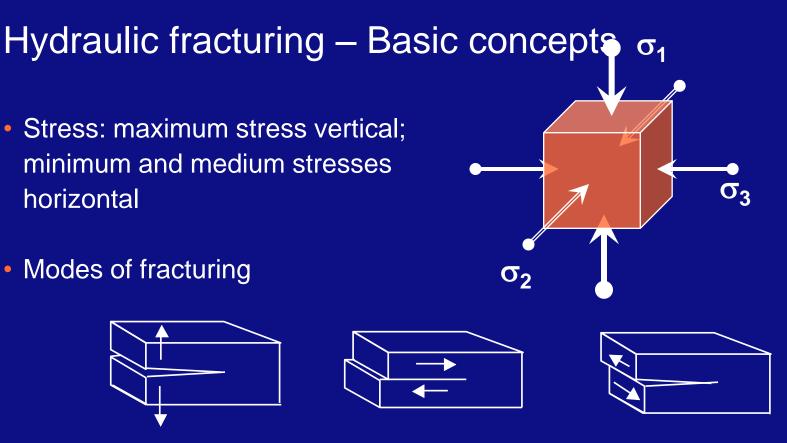
TNO | Knowledge for business

Introduction

Well Stimulation Economic justification Expected increased productivity / injectivity \Leftrightarrow Treatment cost

Key input: Reservoir

- Permeability
- Natural fracture network
- Soluble / non-soluble damage

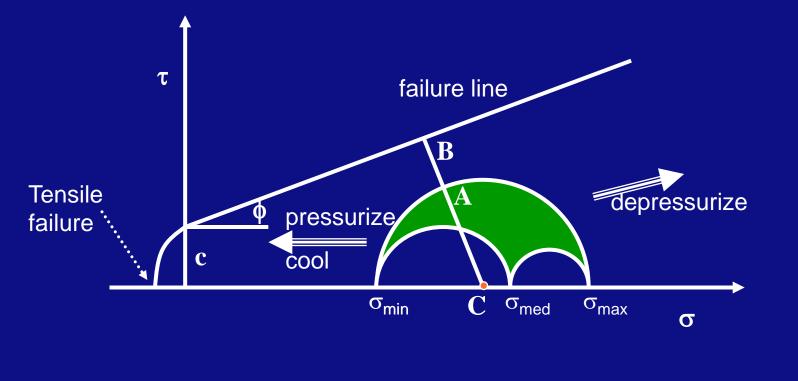

Low-permeability reservoirs: Hydraulic fracturing

Soluble damage: Acidizing

Introduction (cntn'd)

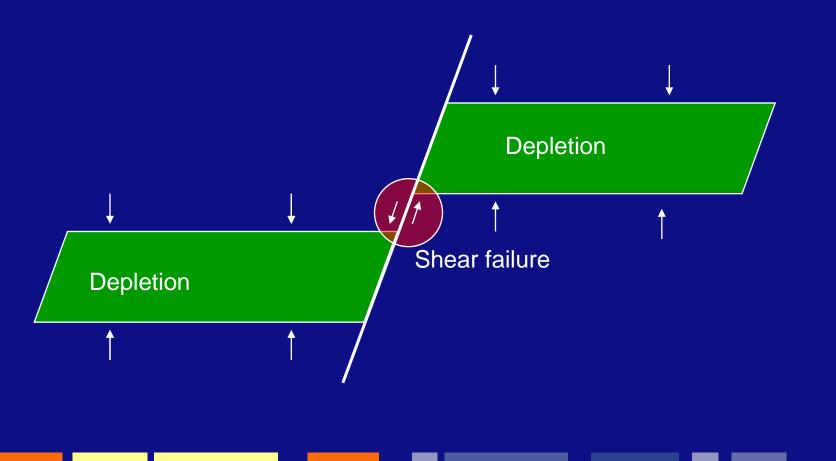
- Matrix acidizing
 - Dissolve "skin" with acid (HCI, HF, EDTA)
 - Not working with all kinds of damage
- Hydraulic fracturing
 - Increase inflow area / break through damage
 - Pump fluid with high pressure break the formation
 - Pump "proppant" in open fracture
 - Keep frac open after shutin
 - High-permeability path from reservoir to well
- Water fracturing
 - Connect well to considerable reservoir volume
 - Low-perm naturally fractured reservoir
- Acid fracturing
 - Low-perm dolomite / limestone

Mode I: Opening


Mode II: Sliding

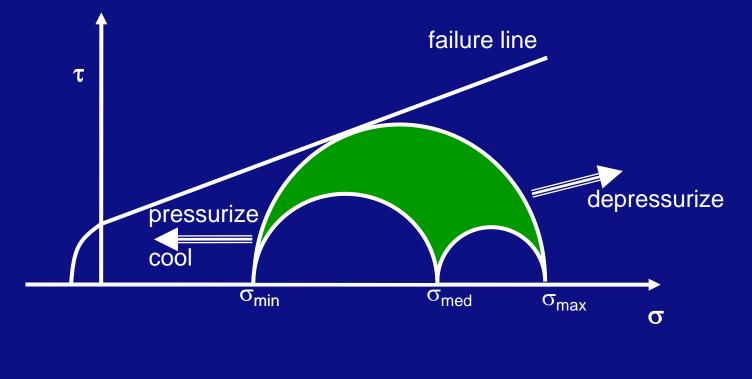
Mode III: Tearing

 Hydraulic fracturing: Tensile (mode I) – Vertical fracture has least resistance


Mohr-Coulomb failure criterion

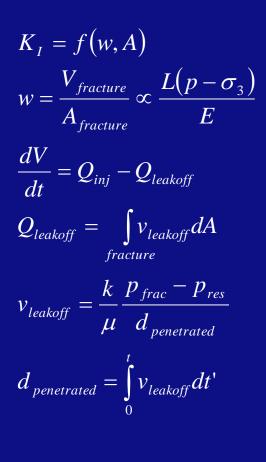
- Shear failure line (Mode II): $\tau = c + \sigma \sin \phi$
- Tensile failure (Mode I): at horizontal axis
- Horizontal axis: Net stress (total stress pressure)

Example: Failure due to depressurization


- Shear failure due to depressurization may happen in complex areas
- Reactivation of fault

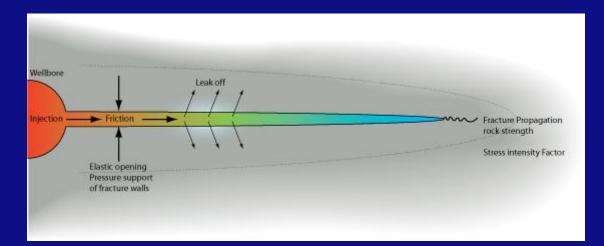
Critically stressed formation

- Common in tectonically active regions
- Difference between depleted hydrocarbon reservoirs and pressurized geothermal reservoirs: no help of earlier depletion


• Use depleted hydrocarbon fields!

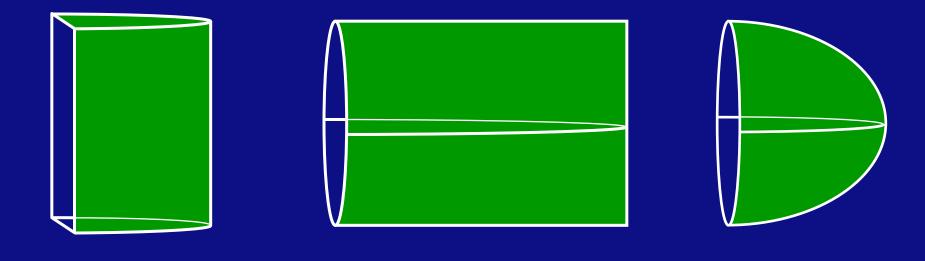
Hydraulic fracturing – Basics

Couple Conservation Laws and Constitutive Equations


- Conservation of Mass
- Conservation of Energy
 - Fracture propagation criterion
- Conservation of Momentum
 - Not relevant
- Incompressibility
- Stresses and strains
 - Hooke's law
 - Stress intensity factor
- Flux laws
 - Darcy
 - Temperature
- Coupled processes
 - Thermal fracturing

Hydraulic fracturing – Visualization of the process

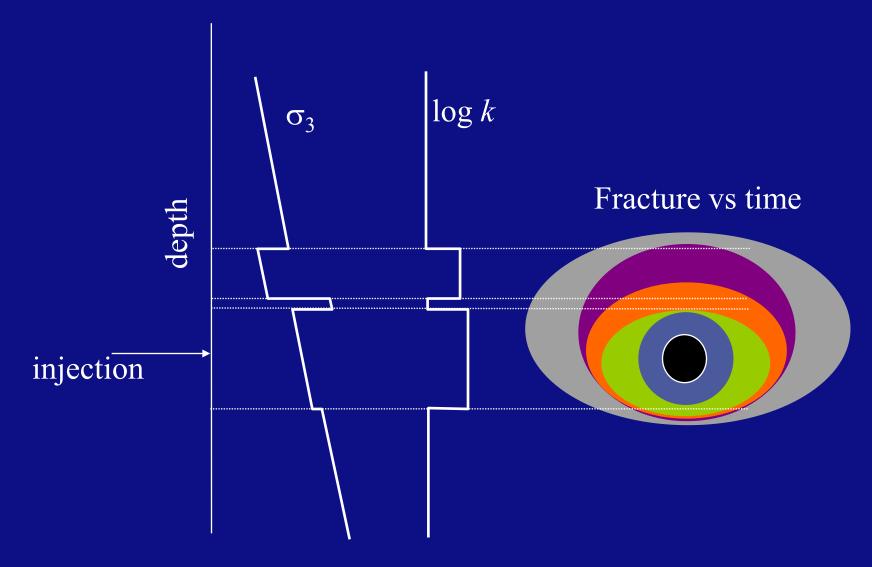
• Processes in hydraulic fracturing; top view



Hydraulic fracturing – Modeling

2D models

- Geertsma de Klerk / Khristianovic
- Perkins Kern Nordgren
- Radial model



Hydraulic fracturing – Modeling (cntn'd)

3D models

- Profile of the minimum in-situ stress
- Elasticity profile
- 3D pore pressure field / leak-off
- Influence of pore pressure increase and temperature decrease on stress (poro-elasticity and thermo-elasticity)
- Plugging of the fracture interior

Data Collection

Static data

- Geology
- Regional stresses
- Natural fractures
- Reserves
- Elasticity

Dynamic data

- Well tests (permeability)
- Production history
- Microfracs / minifracs

Treatment data

- Pressures
- Rates
- Passive seismic
- Tiltmeter mapping

Post-treatment

- Well test results
- Productivity

Build a knowledge base! cf Drilling

Design considerations

- The goal of hydraulic fracturing is economic
- Expected production
 - Analytic expressions (Prats)
 - Semi-analytic calculations
 - Reservoir simulation
- Connection with Geology
 - Flow barriers
 - Permeability
 - Heterogeneity
 - Natural fractures
- Dimensionless fracture conductivity $C_{fD} = \frac{k_f \cdot w}{k \cdot L}$ Optimum value:
 - High k: maximize width and proppant permeability
 - Low k: maximize length
 - Proppant placement

Design considerations

Minifrac test

More input for design:

- In-situ stresses
- Fracturing pressures
- Leakoff behaviour
- Effects of layering:
 - Containing capacity
 - Connection
- Natural fractures
- Poro-elasticity
- Thermo-elasticity

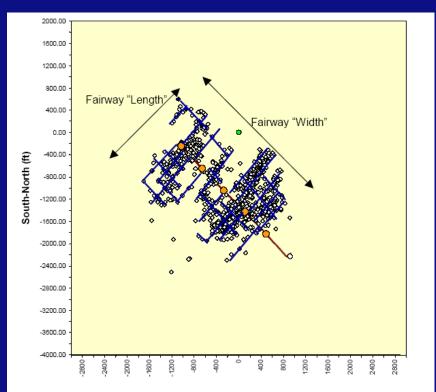
7400 7400 O Bottomhole Pressure 7200 Pump Time = 12.472 7200 <mark>A-</mark>ISIP - x dP/dx Delta TC = 0.56688 181 Bottomhole Pressure (psi) BH ISIP = 7164.2 7000 7000 BH Closure Pres. = 6739. Efficiency^{\star} = 0.041514 Residual = 10.632 6800 6800 dP/dx Slope 1 = -561.43 Closure Slope 2 = -1501.1 6600 6600 1A 6400 6400 2 6200 6200 •1B 6000 6000 5800 5800 5600 5600 0.6 0.8 1.0 1.2 1.6 0.2 0.4 1.4 1.8 0 Sqrt Delta Time (Sqrt min)

J.J.

Build up a knowledge base:

- Treatment performance
- Productivity monitoring

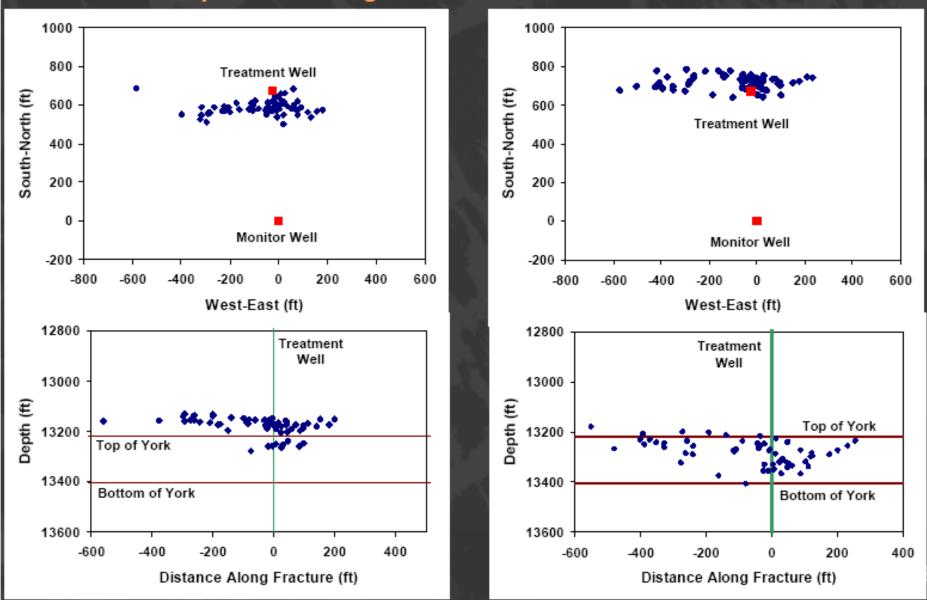
Treatment performance monitoring



Build up a knowledge base:

- Treatment performance
- Productivity monitoring

Treatment performance monitoring


- Rates & Pressure traces (e.g. Tip-Screen-Out)
- Use fracture simulator
- Tiltmeters
 - Surface
 - Offset well
- Microseismic mapping two downhole receivers

West-East (ft)

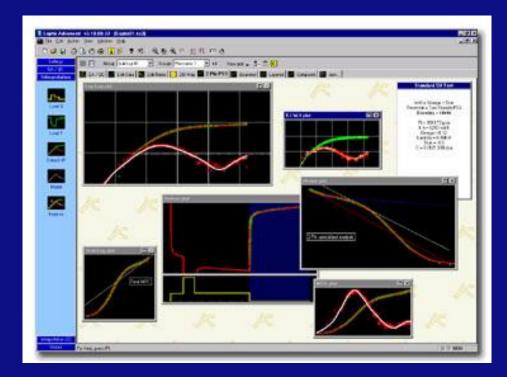
Microseismic locations using 3-layer velocity structure from dipole sonic log

Microseismic locations using 3layer velocity structure from perforation timing

Build up a knowledge base:

- Treatment performance
- Productivity monitoring

Productivity monitoring

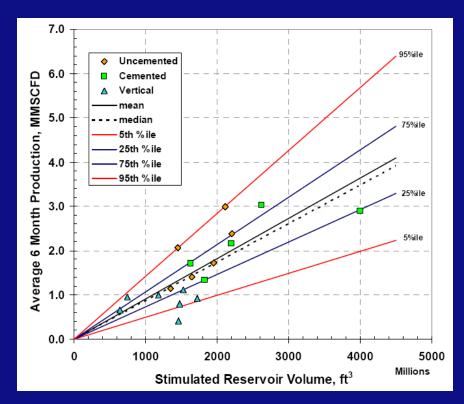


Build up a knowledge base:

- Treatment performance
- Productivity monitoring

Productivity monitoring

 Well testing: Effective fracture size



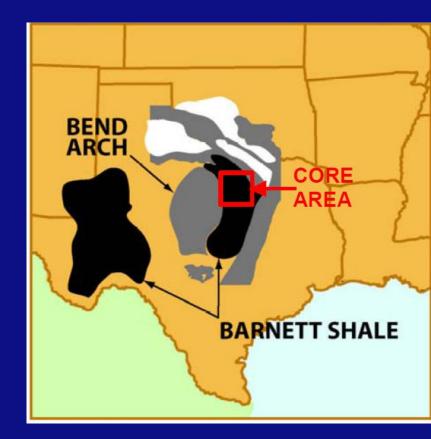
Build up a knowledge base:

- Treatment performance
- Productivity monitoring

Productivity monitoring

- Well testing: Effective fracture size
- Productivity evaluation
 e.g. Stimulated Volume
 Analysis

Hydraulic fracturing – Barnett Shale


- Very low permeability
- Naturally fractured

Similarities with Geothermal Systems

- Goal: interconnected fracture network
- Waterfracturing
- Monitoring is key

Translation problems

- Continuous stimulation by injection
- Effect of temperature
- No depletion

Acidizing

- Appropriate for dissolution of damage or "skin"
- What is the source of the skin?
 - Pseudoskin: limited entry, offcentred wells; perforation density/phasing/penetration
 - Turbulence or non-laminar flow
 - Real skin
- Chemical reaction
 - Diffusion (mass transfer) limited
 - Surface reaction rate limited

- Real skin: origin
 - Drilling mud invasion
 - Drilling fluid filtrate
 - Cementing damage
 - Perforation damage
 - Gravel packs
 - Completion fluids, workovers
 - Produced fines
 - Shear failure
 - Failing stimulation
 - Dirty injection water
 - Polymer flooding

Acidizing: Types of skin

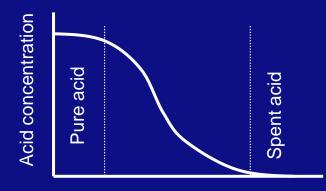
- Emulsions Mixing water & oil – treat with surfactant
- Wettability change

 e.g. due to oil-based drilling mud –
 treat with solvent (remove
 hydrocarbons) and water-wetting
 surfactant
- Water block
 Increase in water saturation near the well – treat with surfactant
- Organic deposits Paraffins, asphaltenes – treat with solvent

- Silts & Clays
 Due to fines migration treat with
 HF
- Scales
 - Carbonate treat with HCI
 - Sulfate treat with EDTA
 - Chloride scales weak acid / HCl
 - Silica scales treat with HF
 - Hydroxide scales treat with HCI

Acidizing: Chemistry and Physics

Chemical reaction


- High activation energy: reaction rate limited $q_s = k_j A C^m$ $C_{interface} = C_{bulk}$
- Low activation energy barrier: Reaction rate limited by number of contacts $q_d = \frac{DAC}{\delta}$ (mass transfer).
- Mixed kinetics

$$P = \frac{q_d}{q_s} = \frac{D}{k_j \delta C^{m-1}}$$

Effect of temperature

Acidizing Physics

 Surface-reaction-limited Reaction independent of velocity

Distance

• Mass-transfer-limited: Controlled by molecular diffusion $\frac{\partial C}{\partial t} + u\nabla C = D\nabla^2 C$ Wormholing

Acid fracturing

- Fracture the formation
- Etch conducting channels
- Coupling of
 - Flow behaviour
 - Leakoff
 - Viscosity changes
 - Reaction kinetics
 - Fracture mechanics
 - Temperature development

"Lessons"

- What is the goal?
 - Contact area
 - Bypass damage
 - Connect to natural fractures
 - Dissolve skin
 - Contact area in limestone / dolomite
- What is the cost?
 - Treatment cost
 - "Social cost"

- What is the cure?
 - Conventional fracturing
 - Tip-screen-out fracturing
 - Water fracturing
 - Acidizing
 - Acid fracturing
- What is the benefit?
 - Productivity
 - Injectivity
 - Reserves
 - • •
 - Reservoir!

"Lessons"

- Design
 - Reservoir Permeability
 - Fracture conductivity
 - Geology
 - Rock mechanics
 - Seismic risks
 - Minifrac tests
 - Design software
 - Skin source
 - Skin type
 - Acid reaction kinetics
 - Risk of induced seismicity

- Monitoring
 - Rates
 - Pressures
 - Temperature
 - Tiltmeter mapping
 - Microseismics
 - Productivity

Build up a knowledge base

