

Low Enthalpy Cycles - Power Plant Concepts

Silke Köhler¹, Felix Ziegler²

¹GeoForschungsZentrum Potsdam (GFZ) ²Technical University of Berlin (TUB)

Heat source

- Temperature 100°C – 200°C
- Mass flow rate
 50 200 m³/h
 (~14 55 kg/s)
- Limited heat capacity
 ~ 5 to 50 MW_{th} per well
- Sensible heat
- Goal: Electricity generation

Tools

- Cycles and systems
- Design and optimisation
- → Suitability of different cycles for particular applications

entropy

Internally and externally reversible

Carnot Cycle

Lorentz Cycle

○ Triangular Cycle

Internally reversible

○ Rankine Cycle - ideal cycle for steam power processes

Optimisation of the cycle locates the operating conditions for the optimal ideal cycle performance (Tamm et.al.)!

Optimisation approach:

Locate constraints

Locate free variables

 \bigcirc Define optimisation criterium \rightarrow objective function

T, p

○ Find Max / Min by analytical or numerical solving of the function

Optimisation of Carnot Cycle

Optimisation of Lorentz Cycle

Fits in heat source / heat sink characteristics No optimisation

Availability? – not all state changes can be realized with available hard ware

Ideal cycles help to analyse complex problems Real cycles suffer losses

entropy

Actual Vapor Power Cycle (Organic Working Fluid)

Kalina KCS 34 Layout

Heat Transfer Diagram Kalina

GFZ

POTSDAM

Optimised for work output

Optimised for work output

$$\eta_{\text{sys}} = \frac{P_{\text{net}}}{\dot{Q}_{\text{brine}}} = \frac{P_{\text{gen}} - P_{\text{DHpump}} - P_{\text{FeedPump}} - P_{\text{CWpump}}}{\dot{m}_{\text{brine}} c_{\text{b}} \left(T_{\text{b,in}} - T_{\text{o}} \right)}$$

Both systems are suitable for power production from low enthalpy reservoirs

With given constraints from heat source and heat sink

○ ORC cool the brine more

○ Kalina reach higher thermal efficiency

○ High parasitic loads at ORC, especially for air cooling

○ ORC are more sensible to changes ORC of heat sink

Suitability of the systems

○ Kalina KCS34 up to 150 °C brine or CHP

○ ORC from 150 °C brine temperature

Improvements

○ Supercritical ORC may improve thermal efficiency

Other Kalina systems may improve cooling of brine

- brine temperature > temperature for heating purposes
- Not necessarily simultaneous production

Additional constraints due to heating demand!

- Outlet temperature brine
- Mass flow rate brine

 > brine temperature ≈ temperature for heating
 > Subsystems compete

○ Brine 35 kg/s, 98 °C

District heating system (assumed) 50 kg/s, 70/55, 3.1 MW_{th}

• Working medium power plant Perflourpentane, water cooling 15/20

ORC & Kalina follow the same rules, but deal differently with the losses.

Losses

- Irreversible heat transfer
- Internal irreversibilities (non-isentropic state changes turbine and pump, pressure losses)
- Parasitic loads (cycle pump, down hole pump, cooling devices)

Constraints

Heat source and heat sink

Free Variables

Layout

- Working fluid (medium, composition)
- Upper process temperature

Power plant: optimised for work output

CHP: optimised for RUE