"GEOTHERMAL BINARY PLANTS: WATER OR AIR COOLED ?"

by D.Mendrinos, E.Kontoleontos, C.Karytsas

Centre for Renewable Energy Sources

Geothermal Power Plants

- Back pressure flash plants
- Condensing flash plants
- Binary plants

Cooling Options

- (water cooled condensers) & (surface water)
- (water cooled condensers) & (wet type cooling towers)
- (air cooled condensers) & (dry type cooling towers)

Carnot Efficiency

 $n = \frac{Tg - Tc}{Tg}$

- *"Tg*": geothermal source temperature, °K
- "Tc": cooling water temperature, °K

Turbine Efficiency

$$w = n_t \cdot m \cdot (H_s - H_o) \qquad \qquad N = n_g \cdot w$$

$$n = \frac{N}{m \cdot H_s} = \frac{n_g \cdot n_t \cdot (H_s - H_o)}{H_s}$$

- *n*: overall conversion efficiency
- *n_a: generator efficiency*
- *n_t: turbine efficiency*
- *H_s*: vapour specific enthalpy at turbine inlet
- *H_o: vapour specific enthalpy at turbine outlet*
- *m: fluid mass flow*

Water vs. Air cooled condensers				
property	<u>water</u>	<u>air</u>		
Specific heat, $kJ / kg^{o}C$	$c_{pw} = 4,19$	$c_{pa} = 1,00$		
Density, <i>kg/m³</i>	ρ _w =999	ρ _a =1,2		
Volumetric Heat Capacity, $kJ / m^{3o}C$	$VHC_w = 4182$	$VHC_{a} = 1,21$		
Heat transfer coefficient $kW / m^{2o}C$	$h_{w} = 4,84$	$h_a = 0,084$		

Binary Plant Economics

- Heat Exchangers
- H.E. surface
- weight

Cooling with Surface Water

- 5 25 °C ⇒
- Iowest condensing temperature: 15-35 ℃
- 970 t/h per MW_e for $\Delta T=10$ °C
- Shell & Tube Condenser
 - cross flow, double pass
- Plate H.E. as condenser
 10-20 kW_{th}/m² for ∆T=5 ℃
 easy to clean

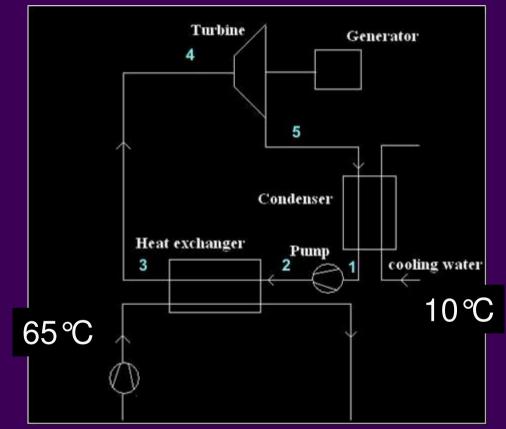
Cooling with Surface Water

- Lower than ambient T in Summer
- Do not froze in Winter
- No cooling towers
- Cogeneration possibility

Cooling with Surface Water

- Need for large water quantity
- Fooling or corrosion
- Need to transport water

Wet Type Cooling Towers


- Mechanical draft (fan)
- Cool water loop with ΔT~10°C
- Deliver >25 ℃
- 40 °C condensing temperature
- 30 t/h per MW_e of make-up water
 evaporation & blowdown
- Flash Plants

direct contact condensers

Dry Type Cooling Towers

- Mechanical draft (fans)
- Deliver ambient temperature air
- 40-50 °C condensing temperature
- No need for make-up water
- Most expensive option:
 - 5-10 times more costs than wet type
 - 20-50% higher binary plant costs
- The only option in case of water scarcity or cold climatic extremes

R134a Rankine Cycle Optimization (LOW-BIN project)

using the EASY software code (Evolutionary Algorithm System) by National Technical University of Athens, ref. <u>http://velos0.ltt.mech.ntua.gr/EASY</u>

Modeling the Condenser

Overall heat transfer:

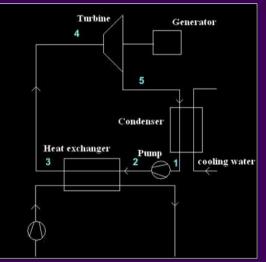
$$U_{o} = \frac{1}{\frac{A_{o}}{A_{i}}\frac{1}{h_{i}} + \frac{A_{o}\ln(r_{o}/r_{i})}{2\pi kL} + \frac{1}{h_{o}}}$$

Laminar condensation on tubes surface:

$$h_{o} = 0.725 \left[\frac{\rho(\rho - \rho_{v})gh_{fg}k_{f}^{3}}{\mu_{f}d(T_{g} - T_{w})} \right]^{0.25}$$

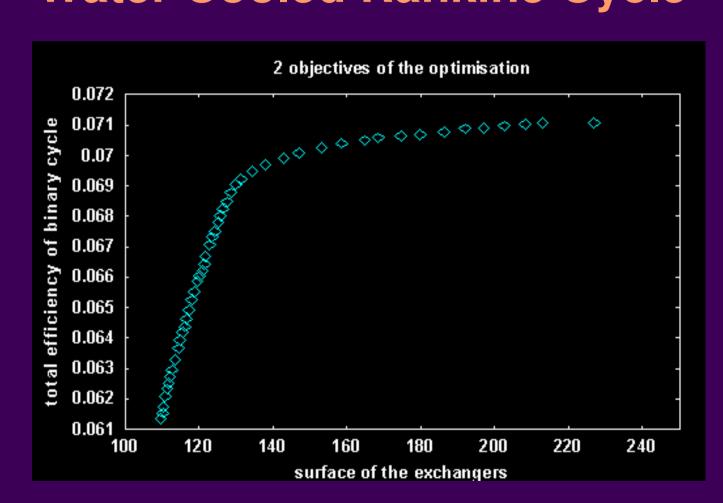
Turbulent flow in tubes:

$$h_i = \frac{Nuk}{D}$$
$$Nu = 0.023 \,\mathrm{Re}^{0.8} \,\mathrm{Pr}^{0.4}$$

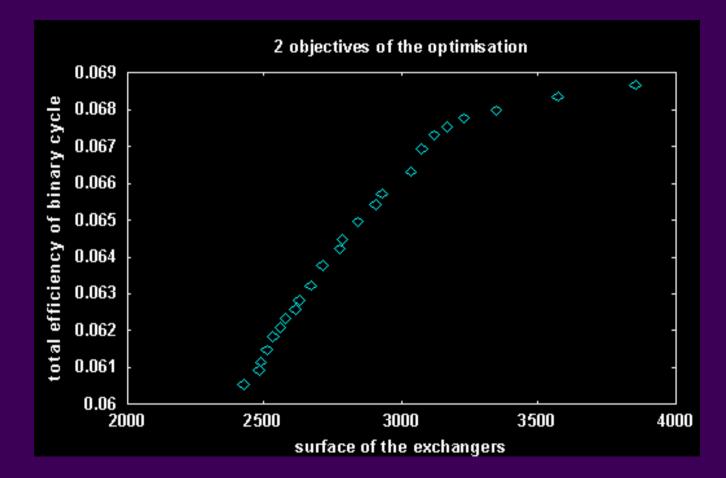

Optimization Variables

variable	min	max
R134a pump discharge pressure P ₂ , bar	7,5	12,0
Geothermal water mass flow m _{gr} , kg/s	45	55
R134a mass flow m _{134a} , kg/s	10	20
Geothermal water ∆T _H , °C	10	30
Cooling water ΔT_{C} , °C	7,5	12,5

Optimization Objectives


Maximum conversion efficiency

$$\eta_{cycle} = \frac{w_{turbine}}{q_{heatexch}} = \frac{h_4 - h_5}{h_3 - h_2}$$



- Minimum costs
- ⇒ minimum heat exchange surface

Water Cooled Rankine Cycle

Air Cooled Rankine Cycle

Water vs. Air Cooled

variable	Water cooled	Air cooled
P _{2-R134a} (bar)	11	11
m _{gr} (kg/sec)	52,3	53,0
m _{134a} (kg/sec)	17,5	17,5
ΔT _H (°C)	17,5	17,8
ΔT_{C} (°C)	7,5	7,5
R134a pump power (KW)	13	12
cooling fluid flow (m ³ /h)	403	3,45 ⋅10 ⁵
Overall heat transfer coefficient U	5580	102
Surface of the condenser (m ²)	88	3160
Total H.E. surface (m ²)	138	3230
Conversion Efficiency	6,96 %	6,78 %

Conclusions

- Cooling improves conversion efficiency
- Binary Plants:
 Efficiency ↓, Costs ↑, Water needs ↓ for:

Cooling with surface water ↓ Wet type cooling towers ↓ Dry type cooling towers