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Heat flow: definition

*The direction of the temperature increase in the Earth is practically
vertical. By denoting the vertical coordinate (positive downwards) by
z, the surface heat flow q, is

d, = -AdT/dz

*where the negative sign indicates that the heat flows upwards. g, is
determined by measuring the thermal conductivity A (on borehole
cores in the laboratory, the Sl unit is Wm-1K-1) and of the temperature
(°C) increase in boreholes, from which the gradient dT/dz follows.

*The constant conductive outflow of heat, driven by the temperature
gradient between the hot interior and the cold surface of the Earth, is
on the average 80 mW/mz2. The global heat flow amounts to an
impressive 40 million MW.

*The surface heat flow can vary from a few tens of mW/m2 to several
W/mz2,
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Fig. 7. Top: Temperature-depth profiles for the Newcastle geothermal system in the Basin and Range province, USA (after Chapman et al
1981). Bottom: heat flow map for the Newcastle geothermal system. Borehole numbers in parentheses. Values and contours in mW m 2.
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and convective

heat transfer in a
geothermal system
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Buoyancy is due to the decrease of
fluid density with increasing
temperature

P+ (T) = Po[l_af(T _TO)J

where p, is the density at reference
temperature T, and ¢ is the
volumetric fluid expansion
coefficient.

To
aYSI.

Porous

] iermeable Iaier

Ty GEOWATT /AG i

CH - 8050 Zdrich




The onset of free convection in a horizontal permeable

layer, bound by impervious cap and base, requires the
Rayleigh number Ra to reach a critical value.

The Rayleigh number depends on several parameters:

Ra=a,gATHp?%cix/

where o Is the thermal expansion coefficient, g is the
gravitational acceleration, AT the temperature
difference between (hot) base and (cool) top, H the
layer thickness, k the specific permeabilty of the layer,
and p the dynamic viscosity of the fluid. Convection
cells are created in the permeable layer when Ra >
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Convective heat transfer results in highly non-linear
temperature-depth profiles.

A typical example from the Hot Dry Rock research site in
Soultz-sous-Foréts, located in the Rhine Graben: in the
Impermeable cap layer above the zone of convection the
conductive heat flow and thus the temperature gradient
are elevated, whereas the convecting zone shows at
times very low gradients. Below the zone of convection
the gradient is “normal”.

The gradient values are 100 °C km-1 above, 10 °C km! in
the convecting zone, and 32 °C km-1 in the base.
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Fluid upflow

Updomed isotherms due to convective heat transfer
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Geothermal processes involving steam and water
White, Muffler & Truesdell 1971
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Fournier (1981)

Liquid-dominated: Vapor-dominated:
Water is the continuos Steam is the continuous
phase phase



Counterflow in two-phase system: steam up, water down.
Bjornsson (1993)
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Two-phase aspects of heat transfer in active geothermal sytems

* Two types of geothermal reservoirs:
1) vapor-dominated
2) water-dominated

* Two-phase mixtures are instable

* Solved gases increase the instability

* When water reaches saturation pressure at ascent — boiling
begins

* Two-phase convection cells smaller than for one-phase
* Counterflow in vapor-dominated reservoir
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Fig. 2. (a) The platc boundaries between North America, Africa and Eurasia as outlined by the recent seismicity [afler
Wanick et al., 1982]. The inset depicts a simplificd scismotectonic stress scheme for central and northwestern Furope
[after Ahomer, 1975].

(b) Generalized plate boundaries and seismolectonic stress pattems in the Eastern Atlantic as well as in the
Mediterranean and Alpine region [after Udias, 1982; Mucller, 1989]. Ac = Acgean plate; An = Anatolian plate. Az =
Azores triple junction; Ad = Adriatic promontory (or Apulian "microplate”).
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<— 500 mW/m?

Heat flow map
The Geysers, USA

Stimac et al. (2001)
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Location of
Taupo Volcanic Zone,
New Zealand
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Heat flow map
in Lake Taupo

Whiteford (1995)
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Heat flow map
of Iceland

Flovenz &
Saemundsson (1993)
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O.G. FLOVENZ AND K. SAZMUNDSSON

A
S

/ c o

L | B2 ¢
l L pufufjall @/2 .7_\_\
[ — i iy
[¢ = . b I ;’7
Y . A\ ,f;' _—Hualljorour
B \ g, o
¢ (;,\

Hvalfjordur

El 1 le_l ;/-“/ﬂ_\ﬁm} ) \

Fig 6. Temperature gradient anomaly in Hvalfjordur in west

Iceland. There are no surface manifestations of the geother-

mal activity in the region. Drilling resulted in the discovery of

a 80°C hot geothermal reservoir. The anomaly is N-S elon-

gated suggesting that the hot aquifer is related to a fracture

zone of that trend, The anomaly was defined on the basis of
60 m deep boreholes.
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350 °C/km corresponds,
With A eq¢ = 1.8 W/m,K

to 630 mMW/m?2
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Rheology: general considerations
(from Ranalli & Rybach 2005)

The rheology of the lithosphere in a given area is a function of
lithology, structure, tectonic regime, pore fluid pressure, and
temperature. The last two factors play a predominant role in
geothermal areas.

At relatively low temperature, the rheology of rocks is brittle, and
can be approximately described by the Coulomb-Navier shear
failure criterion (also known as Byerlee’s law in rock mechanics).
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With increasing temperature, rocks become progressively
more ductile. The brittle/ductile (BD) transition in nature is not

sharp, but probably occurs over a limited depth range of a few
kilometers.

The critical temperature for the BD transition depends on
mineralogical composition, and varies between ~ 300 * 50 oC for
quartz-rich rocks, to ~ 450 * 50 oC for feldspar-rich rocks, and ~ 650
+ 50 oC for ultrabasic rocks. The pore fluid pressure affects the
transition temperature, increasing it and therefore extending the
brittle field.
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Most rheological profiles show that the lithosphere is rheologically
stratified, with relatively strong upper crust and uppermost
lithospheric mantle separated by a relatively weak lower crust (the
so-called “jelly-sandwich” model).

However, the presence of this stratification depends on thickness,
composition, and temperature.

For high geothermal gradients, corresponding to values of surface
heat flow g 2 100 mW m-2, the contribution of the lithospheric mantle
becomes negligible, and the total lithopheric strength resides in the
crust.
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Depth of the BD transition and upper crustal structure

The depth of the BD transition in the crust, for a given lithology, is
essentially temperature-controlled (and the critical temperature depends
on pore fluid pressure).

The depth of the BD transition has important consequences for local
seismicity and structure; the latter, in turn, can affect the geothermal
regime through flow of fluids along preferential pathways.

In the following discussion, the Larderello geothermal field is used as an
example

W | 8§ S

GEOWATT /AG 77

CH - 8050 Zurich



INNER ZONFE QUTER ZONFKF
Val Tiberina Adrintic coast

Pienza
= e —— ———50- e e e e
— _-__' L TN - A
- SO = - > 30 _ y T — ] =0y S — | ]”
 K-horizon” R e W g d FF DR ST
21 I c - 20
30 1 haqcorhlghiv relleclive crust 30
40 - Soe e base of the crust L
“ 40
PR i | e
WSW ENE S5W NNE SW NE

Isotherms (°C) and inferred location of the K-horizon along the
CROP 03 seismic line, running approximately SW-NE from the
Tyrrhenian to the Adriatic seas south of the Larderello field.

(from Liotta & Ranalli 1999)
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Geological (both surface and borehole) and seismological evidence,
coupled with rheological estimates, support the interpretation of the K-
horizon as corresponding roughly to the top of the BD transition in the
crust.

Two aspects of this are of general importance:

* the BD transition may in some cases (e.g., fluid concentration at its
level) be detectable by seismic reflection;

 indirect structural evidence (the “rooting out” of listric faults) may
help in its detection.

From the applied viewpoint, the role of upper crustal listric normal
faults as a factor in the distribution and circulation of geothermal fluids
is to be taken into account in the exploration and exploitation of
geothermal resources.
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SUMMARY HEAT FLOW SIGNATURES

® Surface heat flow signatures are diagnostic of
1) heat transfer mechanisms
2) process scales.

® Convective heat transfer predominates in active
geothermal systems (,,domed isotherms*).

®* Two-phase phenomena are relevant in high-
temperature geothermal systems.

* Active geothermal systems are characterized by typical
high heat flow signatures:

* Heat flow values between several 100 m\W/m? and some
W/m? can be found there.
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SUMMARY RHEOLOGIC SIGNATURES (1)

®* Two main factors affect the rheology of the lithosphere in active
geothermal areas: steep temperature gradients and high pore fluid
pressures.

®* Combined with lithology and structure, these factors result in a
rheological zonation with important consequences both for
geodynamic processes and for harnessing geothermal energy.

®* As aconsequence of high temperature, the mechanical lithosphere
Is thin and its total strength can be reduced by almost one order of
magnitude with respect to the average strength of continental

lithosphere of comparable age and thickness.

* The brittle/ductile transition is located within the upper crust at
depths less than 5-10 km, acts as the root zone of listric normal
faults in extensional environments, and at least in some cases is
visible on seismic reflection lines.
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SUMMARY RHEOLOGIC SIGNATURES (2)

* “Hot” sections of continental lithosphere, where many geothermal
systems are located, are characterized by a large decrease in total
lithospheric strength.

®* The BD transition is shallow (within the upper crust), coincides with
the “rooting out” of listric normal faults in extensional zones, and In
some cases (fluid concentration) is detectable seismically.

® Upper crustal faults have an important role as hydraulic channels in
the circulation of geothermal fluids.
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More details can be found in

Available online at www.sciencedirect.com

@ Journal of volcanology
SCIENCE DIRECT® and geothermal research

ELSEVIER Journal of Volcanology and Geothermal Research 148 (2003) 3—19

www.elsevier.com/locate/jvolgeores

Heat flow, heat transfer and lithosphere rheology in
geothermal areas: Features and examples

G. Ranalli **, L. Rybach ®

“Department of Earth Sciences and Ottawa-Carleton Geoscience Centre, Ottawa, Canada K18 5B6
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