

Economic perspectives for developing EGS

Table of content

- General considerations
- Economical approach for EGS
- Comparison to Wind, Biogas or Solar
- Conclusions

What is the market for EGS?

- <u>Power</u>: low efficiency of conversion systems, but product easy to distribute to the customer (demonstrative projects)
- <u>Heat</u>: many possible uses (domestic heating, industrial process, agriculture...), higher efficiency, but product not easy to distribute to the customer (opportunities)

Industrial position in Europe facing EGS

- 1. In Europe, energy utilities/ industrial companies are rarely competent both in underground and surface facilities (ENEL case is actually an exception)
- 2. Industrials prefer to leave development & risk to others (specifically on the drilling side for electrical utilities)
- 3. Small and complex systems as EGS are difficult to explain and sell to industrials compared to other ENR systems (for instance wind or solar farms)

" WAIT AND SEE ..."

Investment consideration

 Is it possible to develop EGS in Europe today on a Project Finance point of view ?

How to make an EGS project "bankable" ?

Economical approach

- (1) Basic EGS configuration (3 MWe case)
- (2) Costs repartition of the basic case
- (3) Technical and economical criteria
- (4) Business plan results and tariff issue
- (5) Sensibility analysis
- (6) Is CHP an alternative for studied case?

3 MWe doublet case (1)

- Basic configuration -
- 2 wells system at # 3000 m depth,
 1 submersible pump at 400 m depth
- (2800m)
 (300m³/h)
 (300m)
 (1)
 (300m)
 (1)
 (300m)
 (1)
 (300m)
 (300m)
 (1)
 (300m)
 (
- Geothermal target : T_{Prod} = 150 °C, Q = 80 kg/s, T_{Reinj} = 75 °C ⇒ Pth = 24 MWth (Pth=Q.p.cp.△T)
- ORC binary plant, air cooled, efficiency = 12,5%

 ⇒ 3 MWe (gross output power)
- Auxiliaries consumption (including pumping):
 1 MWe (33% of GP) ⇒ 2 MWe (net output power)

3 MWe doublet case (2) - Costs repartition -

TOTAL	20 M€	6700 €/kWi (gross power installed cost)
Contingencies	1 M€	5% of total
Reservoir investigation	0,5 M€	MT, VSP, stimulation
BOP (CW, Mech., Elec.)	1,2 M€	Outdoor plant
Pumping system	0,8 M€	LSP, injection pump
ORC plant (3 MWe)	4,5 M€	1500 €/kWi
2 wells (6 M€ each)	12 M€	60% of total

3 MWe doublet case (3) - Technical & Economical criteria -

- 2 years of construction, <u>15 years of operation</u> at 8400 hours/year (96% plant capacity factor)
- Sale of energy = based on the <u>net output power</u>
- Operation costs = 3,5% of CAPEX (700 k€/year)
- Investment during operation = 0,5 M€ / 5 years
- No reservoir depletion (Tprod, permeability ...)

Project IRR target = 10% (before tax, constant €)

3 MWe doublet case (4) - Results and tariff issue -

- In order to satisfy the Project IRR target of 10%, the net output power must be sold at 21 c€/kWh (210 €/MWh)
- <u>In France</u> the EGS tariff is 12 c€/kWh (125 €/MWh, 2006 conditions) applied on net output power, indexed on production and services costs every year, which gives an IRR of 0% (!) with the same basic assumptions
- In Germany, the EGS tariff is 16 c€/kWh (150 €/kWh)
 applied on gross output power, but not indexed (flat rate)
 ; with a cost of electricity for auxiliaries consumption of
 6 c€/kWh (60 €/Mwh, market price) it gives an IRR of 8%

3 MWe doublet case (5) - Sensibility analysis-

Maintain a Project IRR of 10%

<u>Parameter</u>	<u>Variation</u>	Impact on tariff
2 wells cost (CAPEX)	10 to 14 M€ (+- 17%)	19,4 to 22,6 c€/kWh
Auxiliaries consumption	0,8 to 1,2 MWe (27% to 40% of GP)	19,1 to 23,4 c€/kWh
Operating cost (OPEX)	0,4 to 1 M€/year (2 to 5% of CAPEX)	19,2 to 22,8 c€/kWh
All together	Best & worst cases	16 to 27 c€/kWh

3 MWe doublet case (6) - Is cogeneration an alternative? -

- <u>Principle</u>: decrease T_{Reinj} from 75 °C to 45 °C and use the extra geothermal heat (9 MWth) for district heating in order to generate further incomes
- <u>Assumptions</u>: total investment = 25 M€ (+ 5 M€), heat sold during 5 months a year (3650 hours, winter time) at a tariff of 2,5 c€/kWh (25 €/MWh)
- <u>Result</u>: Electricity still to be sold at 20 c€/kWh (instead of 21 c€ / kWh) in order to maintain the same Project IRR of 10%
 - In this case, Heat & Power co-generation does not solve the tariff issue of pure power generation (!)

EGS versus Wind, Biogas or Solar energy (1 – Tariff)

- Onshore wind farm (France): 8 c€/kWh
- EGS (France): 12 c€/kWh
- Offshore wind farm (France): 13 c€/kWh
- Biogas (France): 14 c€/kWh
- EGS (Germany): 16 c€/kWh
- Solar photovoltaic (France): 30-55 c€/kWh

EGS versus Wind, Biogas or Solar energy (2 – Pros and Cons)

Pros

- Compare to Wind or Solar, EGS does not depend on climate, seasons or day/night succession (base load)
- 1 MWe of installed EGS is equivalent to 3 4 MWe of installed Wind Energy (⇒ cost of installed capacity !)
- Compare to Biogas, EGS (nearly) does not produce CO2
 in the atmosphere (ORC = zero emission cycles)

Cons

- EGS is much more complex than Wind or Solar systems
- Auxiliaries consumption is an issue (pumping power)
- Induced seismicity can be a major issue and has to be managed and mitigated ("don't go too deep ...")

Conclusions

- A Drilling issue (cost, but also rig availability)
- B Pumping issue / auxiliaries consumption
- C Power tariff issue of EGS (⇒ 20 c€/kWh)
- D Heat supply alternative (industrial market)
- E Size effect for EGS development (x sites)