Recoverable EGS Resource Estimates

Susan Petty Black Mountain Technology Seattle, Washington

EGS Assessment Study Aug 2005 – Sept 2006

Energy from the Earth's Heat

Conductive heat energy

- Greater than 3 km
- Requires stimulation or other engineering to develop reservoir
- Convective heat energy
 - Hydrothermal systems
 - Impermeable or low permeability systems on the edges of hydrothermal systems
 - Fractured, but may require stimulation or engineering to develop
- □ Hot water co-produced with oil and gas

Conductive Resource - Base vs. Reserves

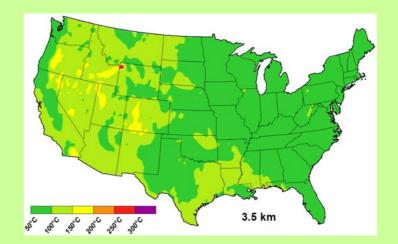
Resource Base

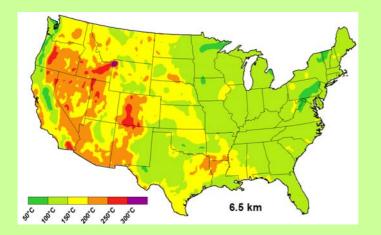
- Total heat in place
- Between 3 km and 10 km

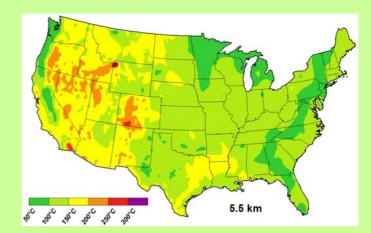
Reserves

- Economic today
- Electric generation
- Direct use of heat
- EGS has no commercial projects as yet, so no reserves

Recoverable Resource


- Extractable
- Conversion efficiency
- Recoverable fraction
- Accessible
- Economics of recovery




Temperature at Depth

□ Calculated by SMU

- Maps of temperature at depth at mid-point of 1km slices
- Area at each temperature in each depth slice
- □ Used to calculate heat in place

EGS Assessment Study Aug 2005 – Sept 2006

Abandonment Temperature

- □ Assume reservoir rock cooled 10°C
- Limit for conversion equipment at surface
- Leaves heat in place for future heat mining with different equipment
- Resource is sustainable due to enormous quantity of heat in place remaining, or available for recovery by heat mining, Q_{available}

$$Q_{total} - Q_{abandonment} = Q_{available}$$

EGS Assessment Study Aug 2005 – Sept 2006

Recovery Factor

□ How much of the available heat can we recover?

$$F_{r} = \frac{Q_{rec}}{Q_{total}} = f[V_{active}, V_{total}, C_{\gamma}, T_{r,i}, T_{r,a}, T_{o}]$$

$$F_{r} = \frac{\rho V_{active} C_{\gamma} (T_{r,i} - T_{r,a})}{\rho V_{total} C_{\gamma} (T_{r,i} - T_{o})}$$

$$F_{r} = \phi_{v} \frac{(T_{r,i} - T_{r,a})}{(T_{r,i} - T_{o})}$$

$$Q_{rec} = \text{recoverable thermal energy content of the reservoir}$$

$$\phi_{v} = \text{active reservoir volume/total reservoir volume}$$

$$\rho = \text{rock density (kg/m^{3})}$$

$$V_{total} = \text{total reservoir volume (m^{3})}$$

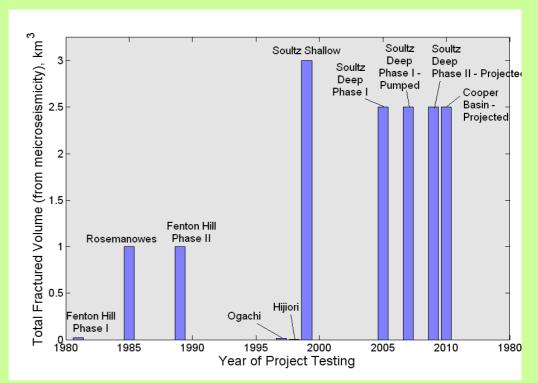
$$C_{\gamma} = \text{rock-specific heat (kJ/kg °C)}$$

$$T_{r,i} = \text{mean initial reservoir rock temperature (°C)}$$

$$T_{ca} = \text{mean rock temperature at which reservoir is abandoned}$$

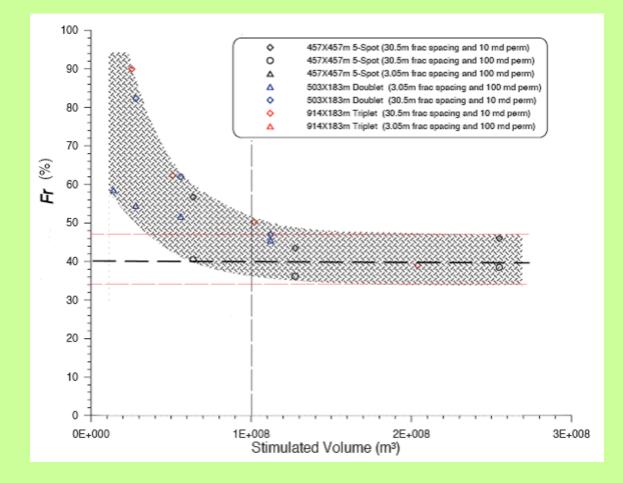
EGS Assessment Study Aug 2005 – Sept 2006

The Future of Geothermal Energy



(°C).

Fractured Volume

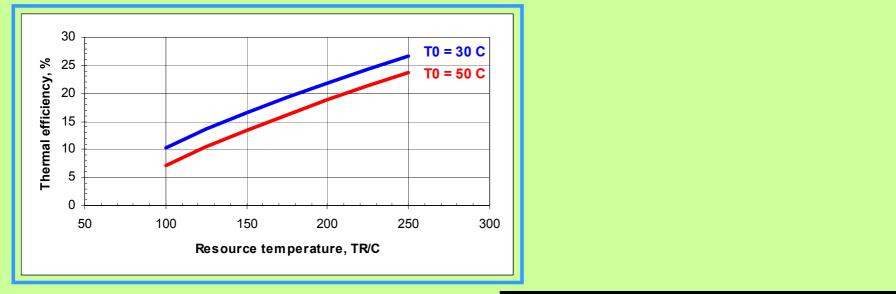

Fractured Volume for EGS Projects

- Recovery of heat depends largely on fractured volume
 - Active heat exchange area
 - Fracture spacing
 - Path length between wells
 - Injector/producer pattern

Recoverable Heat

□Sanyal and Butler, 2005.

EGS Assessment Study Aug 2005 – Sept 2006


Usable Energy – Converting Heat to Power

□ Heat alone is beneficial.

- Conversion of heat to power better justifies well cost
- □ Heat in kilojoules = heat in kiloWatt-sec
- Convert heat to electric power
 - kW-sec/1000 kW/MW = MWt-sec
 - MWt-sec/(30 yrs in seconds)
 - Conversion efficiency MWt x $\eta th \rightarrow$ MWe

Conversion to Electric Power - Cycle Efficiency

Temperature, °C	Cycle Thermal Efficiency η _{th} , %			
150	11			
200	14			
250	16			
300	18			
350	22			

EGS Assessment Study Aug 2005 – Sept 2006

Inaccessible Area

□ Some areas are inaccessible for development:

- Parks State and National
- Recreation Areas
- National Monuments
- Wilderness

Subtract inaccessible fraction

EGS Assessment Study Aug 2005 – Sept 2006

Total Recoverable Power

20% Recoverable Fraction of Thermal Energy from the Reservoir

Depth of Slice, km	Power available for slice, MWe	Amount at 150ºC, MWe	Amount at 200°C, MWe	Amount at 250°C, MWe	Amount at 300°C, MWe	Amount at 350°C, MWe
3 to 4	122,000	120,000	800	700	400	
4 to 5	719,000	678,000	39,000	900	1,200	
5 to 6	1,536,000	1,241,000	284,000	11,000	600	
6 to 7	2,340,000	1,391,000	832,000	114,000	2,800	
7 to 8	3,245,000	1,543,000	1,238,000	415,000	48,000	1,200
8 to 10	4,524,000	1,875,000	1,195,000	1,100,000	302,000	54,000
TOTAL	12,486,000					

EGS Assessment Study Aug 2005 – Sept 2006

Total Recoverable Power

Total Recoverable Energy in Net MWe for 30 Years

2% Recoverable Fraction of Thermal Energy from the Reservoir

Depth of Slice, km	Power available for slice, MWe	Amount at 150°C, MWe	Amount at 200°C, MWe	Amount at 250°C, MWe	Amount at 300°C, MWe	Amount at 350°C, MWe
3 to 4	12,000	12,000	80	70	40	
4 to 5	72,000	68,000	4,000	90	120	
5 to 6	154,000	124,000	28,000	1,100	60	
6 to 7	234,000	139,000	83,000	11,000	300	
7 to 8	324,000	154,000	124,000	41,000	5,000	120
8 to 10	452,000	187,000	119,000	110,000	30,000	5,000
TOTAL	1,249,000					

EGS Assessment Study Aug 2005 – Sept 2006

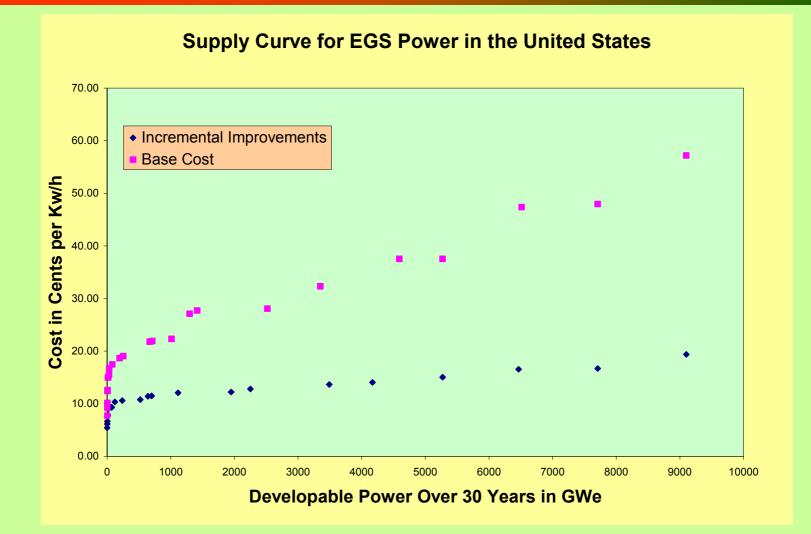
Economic Modeling

Two models used:

- GETEM Geothermal Electricity Technology Evaluation Model
 - U.S. DOE developed new cost of power modeling tool
 - GETEM allows comparing cost of power with current technology to cost with improved technology.

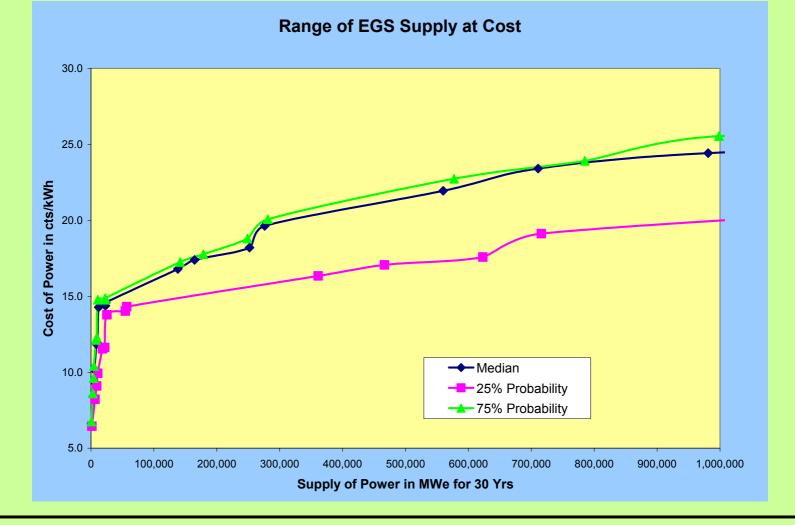
– MIT EGS model

- Updated for 2004 costs
- Similar costs to GETEM for all but the highest cost resources
- Can optimize costs for depth and temperature

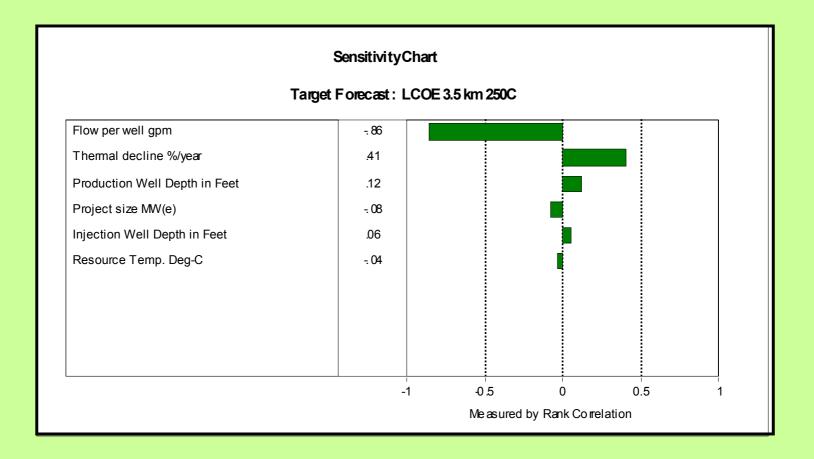

Economic Modeling-GETEM

GETEM	BINARY SYSTEM INPUT SHEET				
Version:		GETEM-2005-A3 (dje-July-06-05)			
BINARY Case Name:	EGS	-AC binary-200C-4km-2015-July 18 2005			
File Name:	GETEN	M-2005-EGS- 150	GS- 150C 2015-sp-1C-July 18 05		
		Baseline	Change	Improved	
Case Date:	1/8/2007	2005		2015	
Cost of Electricity, cent/kW	/h	17.32	-63%	6.44	
Input		Baseline	Change	Improved	
Global Economic Parameters					
Fixed.Charge.Rate	Ratio	0.128	1.00	0.128	
Utiliz.Factor	Ratio	0.95	1.00	0.95	
Contingency	%	5%	1.00	0.05	
Input parameters					
Temperature of GT Fluid in Reservoir	Deg-C	200	1.00	200	
Plant Size (Exclusive of Brine Pumping)	MW(e)	500.0	1.00	500.00	
Number of independent power units		10	0.50	5.00	
Brine Effectiveness (exclusive of brine	Calculate Y or N	v		Y	
pumping)				· · ·	
If N (no), enter value in cell C19 and/or E19	W-h/lb	8.00	1.00	8.00	
Calculated Brine Effectivenss		10.86	1.25	13.57	
Brine Effectiveness		10.86		13.57	
Apply improvement to reducing flow			F		
requirement or increasing power output	-				
Plant Cost		Y		Y	
If N (no), enter value in cell C24 and/or E24	\$/kW	\$ 1,800	1.00	\$ 1,800	
Calculated Plant Cost		\$ 1,551	0.75	\$ 1,006	
Plant Cost	\$/kW	\$ 1,551		\$ 1,006	
Wells Cost Curve: 1=Low, 2=Med, 3=High		4	1.00	3	
PRODUCTION WELL Depth	Feet	13,123	1.00	13,123	
Estimated Cost, from SNL Curve	\$K/well	\$6,955		\$6,955	
User's Cost Curve Multiplier		1.000		1.000	
Producer, Final Cost	\$	\$6,955	0.75	\$5,216	
INJECTION WELL Depth	Feet	13,123	1.00	13,123	
Estimated Cost, from SNL Curve	\$K/well	\$6,955		\$6,955	
Injector, Final Cost	\$K/well	\$6,955	0.75	\$5,216	

EGS Assessment Study Aug 2005 – Sept 2006


Supply Curve for U.S. Conductive EGS

EGS Assessment Study Aug 2005 – Sept 2006


Supply Curve for EGS Power

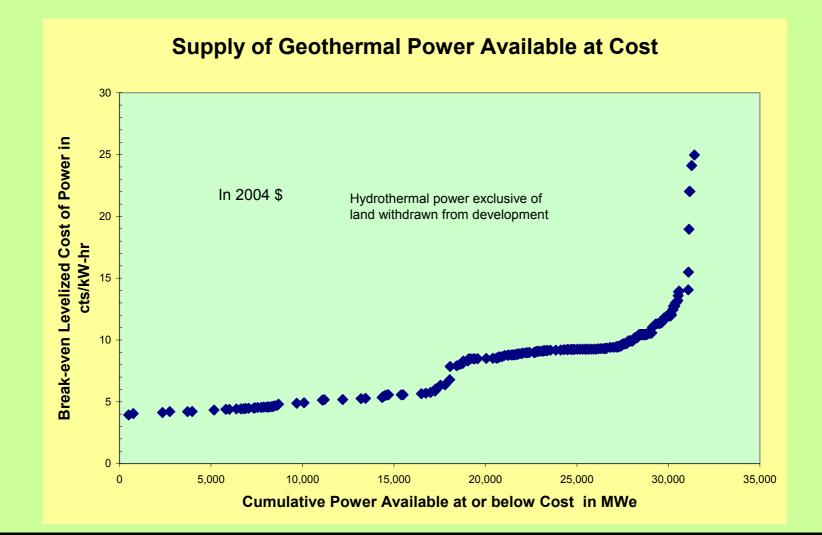
EGS Assessment Study Aug 2005 – Sept 2006

Cost - Sensitivity to Resource Variables

EGS Assessment Study Aug 2005 – Sept 2006

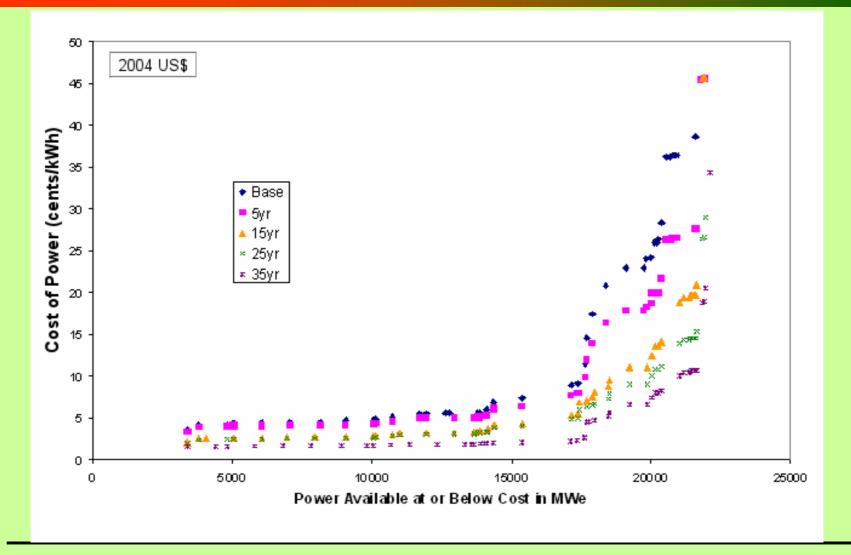
Convective vs. Conductive Resource

Above 3 km

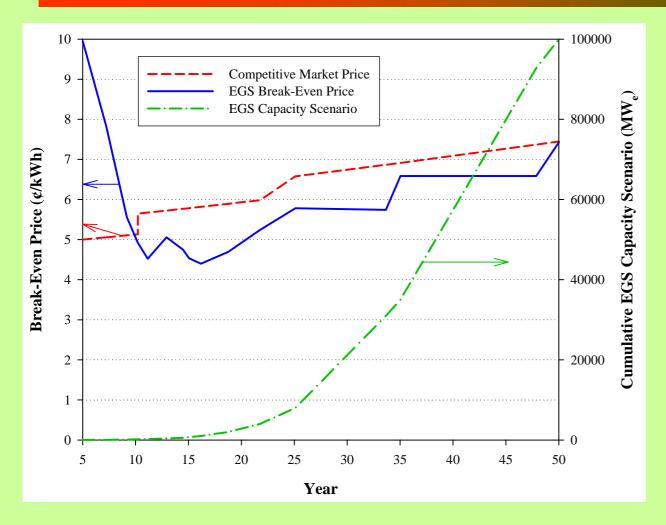

- High temperature fluids
- Permeability often controlled by faults and fractures
- Rock heated by convection of hot water
- Hydrothermal resource very high permeability

□Shallow EGS resource

- On margins of hydrothermal systems
- Volcanic heating


Hydrothermal and EGS Associated with Hydrothermal

EGS Assessment Study Aug 2005 – Sept 2006


Technology Improvement Impact on Cost of Power

EGS Assessment Study Aug 2005 – Sept 2006

Market Penetration of EGS Power

Assumes:

•Learning curves starting from 60 kg/s/prod.

•Technology improvement based on US Federal spending of \$216 million.

•Uses MIT model and assumptions for learning curves

EGS Assessment Study Aug 2005 – Sept 2006

Cost of Power from Co-Produced Fluids

	GETEM	BINARY SYSTEM INPUT SHEET					
		Version:	GETEM-2005-E2-(dje-Feb-01-06)				
		BINARY Case Name:	BINARY Poplar Dome Wells of Opportunity				
		File Name:	EGS N	METEG- Poplar I	EGS Wells of Opp		
				Baseline	Change	Improved	
		Case Date:	1/4/2007	2005		2010	
	Cost o	of Electricity, cent/kW	/h	15.02	-61%	5.86	
		nput		Baseline	Change	Improved	
	Global Econ	omic Parameters					
		Fixed.Charge.Rate	Ratio	0.080	1.00	0.080	
		Utiliz.Factor	Ratio	0.95	5 1.00	0.95	
		Contingency	%	5%	<mark>, 1.00</mark>	0.05	
	Input r	parameters					
		of GT Fluid in Reservoir	Deg-C	135	1.00	135	
	Plant Size (Excl	MW(e)	5.0	2.00	10.00		
	•	of independent power units	``	10	0.20	2.00	
	Brine Effective	eness (exclusive of brine pumping)	Calculate Y or N	Y		Y	
	lf N (no), enter v	value in cell C19 and/or E19	W-h/lb	5.00	1.00	5.00	
	Ca	Iculated Brine Effectivenss	W-h/lb	3.12	2 1.20	3.74	
		Brine Effectiveness	W-h/lb	3.12	2	3.74	
		provement to reducing flow	F - flow or P		Р		
	requirement	or increasing power output	power				
		Plant Cost	Calculate Y or N	N		N	
	If N (no), enter v	alue in cell C24 and/or E24	\$/kW	\$ 2,150	0.85	\$ 1,828	
% of LCOE, Ba	seline System	Calculated Plant Cost	\$/kW	\$ 5,038	0.85	\$ 2,992	
4		Plant Cost	\$/kW	\$ 2,150		\$ 1,828	
			egend for Pie Cha		hasa		
					Stimulation, Make U	In Coste)	
			. Power plant	es, rumps, weil	Sumulation, Make C	p cosis)	
			5. Royalty				
3	2						
		0	. contingency				
×		6	6. Contingency				

Wells of Opportunity

EGS Assessment Study Aug 2005 – Sept 2006

Cost of Power from Co-Produced Fluids

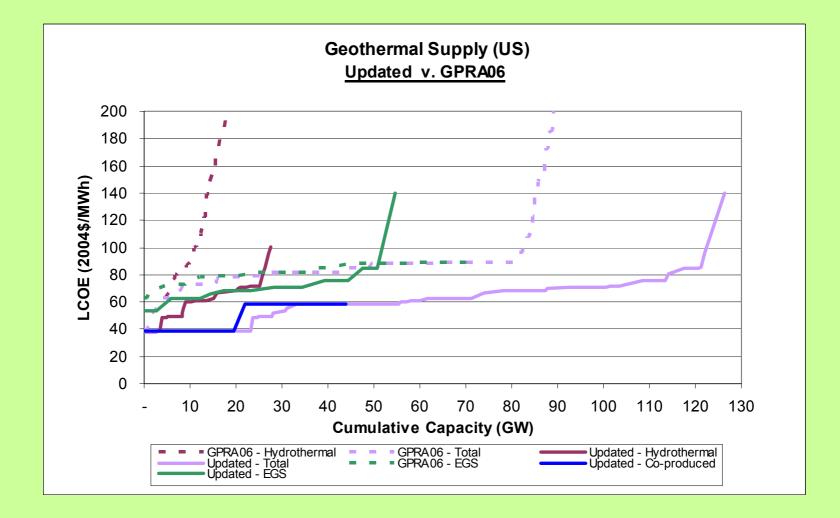
	GETEM			BINARY SYSTE	M INPUT SHEET	-	
		GETEM-2005-E2-(die-Feb-01-06)					
		Version: BINARY Case Name:	BINARY Poplar Dome Enhanced Wells of Opportunity				
		File Name:	EGS METEG- Poplar EGS Wells of Opp Jan 07				
				Baseline	Change	Improved	
		Case Date:	1/4/2007	2005		2010	
	Cost of E	Electricity, cent/kW	/h	8.12	-56%	3.54	
	Inp	ut		Baseline	Change	Improved	
	Global Econom						
		Fixed.Charge.Rate	Ratio	0.080	1.00	0.080	
		Utiliz.Factor	Ratio	0.95	1.00	0.95	
		Contingency	%	5%	1.00	0.05	
	Input par						
	Temperature of	Deg-C	135	1.00	135		
	Plant Size (Exclusi	ve of Brine Pumping)	MW(e)	50.0	3.00	150.00	
	Number of in		10	0.20	2.00		
	Brine Effectivene	ss (exclusive of brine	Calculate Y or N	Y		Y	
	lf N (no). enter valu	pumping) e in cell C19 and/or E19	W-h/lb	5.00	1.00	5.00	
	Calculated Brine Effectivenss		W-h/lb	3.12	1.20	3.74	
		Brine Effectiveness	W-h/lb	3.12		3.74	
	Apply improvement to reducing flow				Р		
	requirement or i	ncreasing power output Plant Cost	power Calculate Y or N	N		N	
	If N (no) enter valu	e in cell C24 and/or E24	\$/kW	\$ 2,150	0.85	\$ 1,828	
NAME OF COMPANY	050000	Calculated Plant Cost	\$/kW	\$ 3,179	0.84	\$ 1,866	
% of LCOE, Im	proved System	Plant Cost		\$ 2.150		\$ 1,828	
3		1. Ĕ5 2. W 3. Fi 4. Po 5. Ro	nd for Pie Chart Se cploration and Conf ells in Field, after C eld, Other (Pipes, F ower plant oyalty ontingency	irmation Confirmation phase	ation, Make Up Cos	ts)	

EGS Assessment Study Aug 2005 – Sept 2006

Geothermal Energy from Oilfields

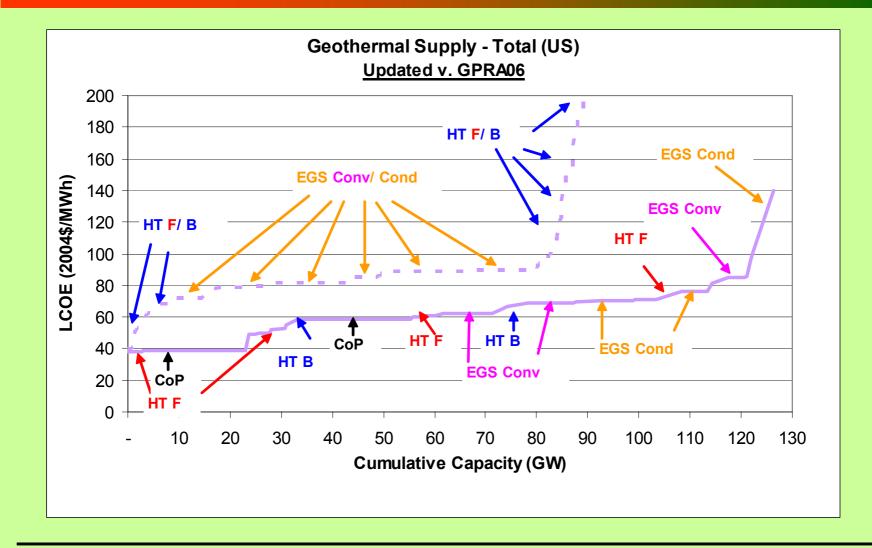
Heat included in conductive resource if deeper than 3 km.

- Dissolved methane not calculated
- Geopressured resource kinetic energy not included
- Deep sedimentary basins
- Co-produced hot water with oil and gas
- Large amounts of available data
- □ Wells of opportunity

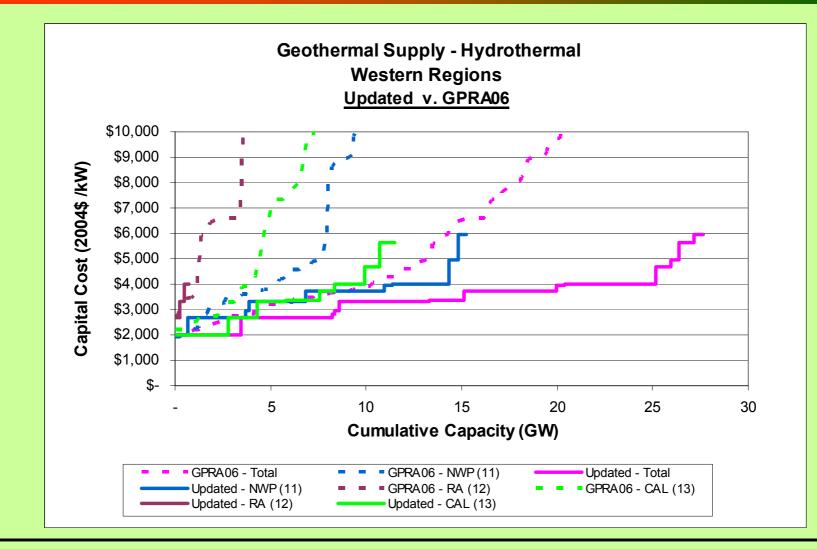


Modeling Geothermal Market Penetration

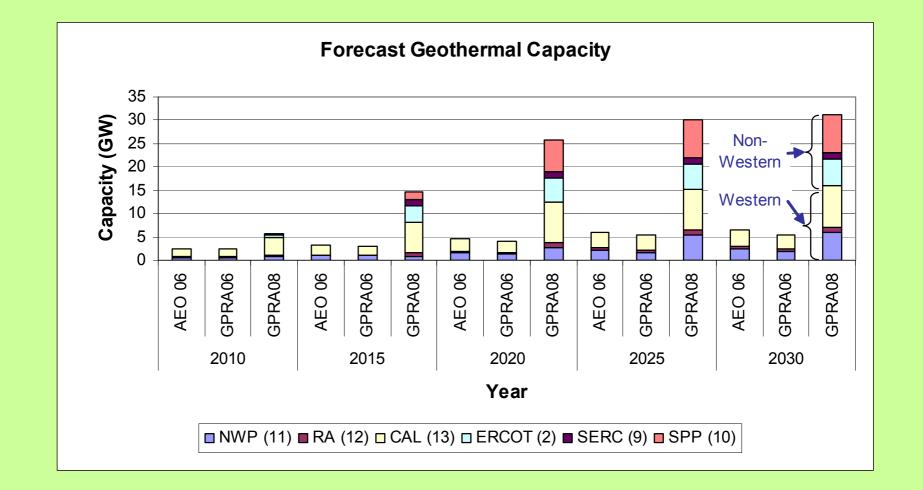
- □ Uses National Energy Modeling System NEMS
- NEMS makes assumptions about technology learning curves, cost escalation.
- Demand based on projections from utilities in each of the federal regions.
- Each technology, ie, pulverized coal, solar thermal, PV, wind, geothermal, etc. has it's own submodule to provide supply input and predict technology improvement


Supply Input for Geothermal Submodule of NEMS

EGS Assessment Study Aug 2005 – Sept 2006


Supply Input for Geothermal Submodule of NEMS

EGS Assessment Study Aug 2005 – Sept 2006


Supply Input for Geothermal Submodule of NEMS

EGS Assessment Study Aug 2005 – Sept 2006

Forcast Geothermal Capacity from NEMS

EGS Assessment Study Aug 2005 – Sept 2006

